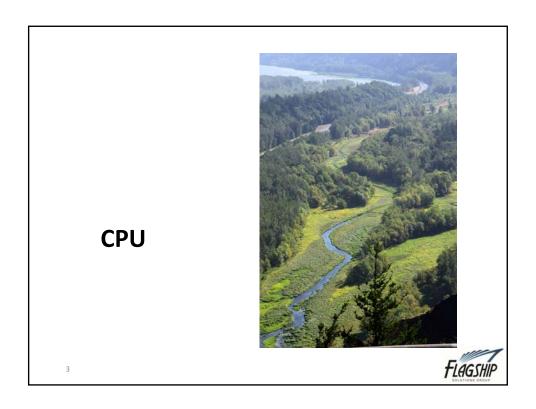
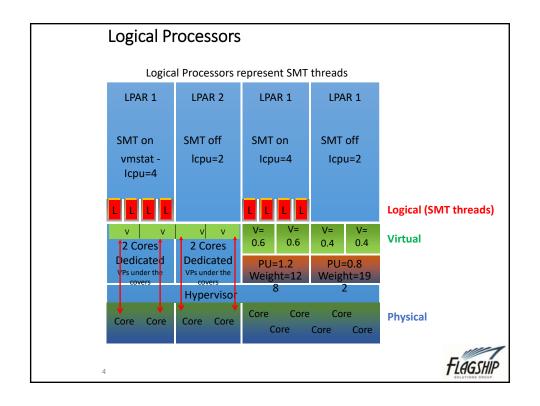
A016260

AIX Performance Tuning Part 1 - CPU & Memory

Jaqui Lynch jlynch@flagshipsg.com IBM Power Systems and IBM Storage Technical University


Agenda


- Part 1
 - CPU
 - Memory tuning
 - Starter Set of Tunables
- Part 3
 - Network
 - Performance Tools

- Part 2
 - · I/O
 - Volume Groups and File systems
 - AIO and CIO for Oracle

Dispatching in shared pool

- VP gets dispatched to a core
 - · First time this becomes the home node
 - All SMT threads for the VP go with the VP
- VP runs to the end of its entitlement
 - If it has more work to do and noone else wants the core it gets more
 - If it has more work to do but other VPs want the core then it gets context switched and put on the home node runQ
 - If it can't get serviced in a timely manner it goes to the global runQ and ends up running somewhere else but its data may still be in the memory on the home node core

FLAGSHI

Understand SMT

- SMT
 - Threads dispatch via a Virtual Processor (VP)
 - Overall more work gets done (throughput)
 - Individual threads run a little slower
 - SMT1: Largest unit of execution work
 - SMT2: Smaller unit of work, but provides greater amount of execution work per cycle
 - SMT4: Smallest unit of work, but provides the maximum amount of execution work per cycle
 - On POWER7, a single thread cannot exceed 65% utilization
 - On POWER6 or POWER5, a single thread can consume 100%
 - Understand thread dispatch order

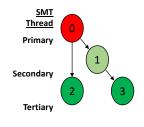
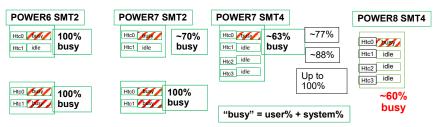



Diagram courtesy of IBM

POWER5/6 vs POWER7/8 - SMT Utilization

POWER7 SMT=2 70% & SMT=4 63% tries to show potential spare capacity

- · Escaped most peoples attention
- * VM goes 100% busy at entitlement & 100% from there on up to 10 x more CPU SMT4 100% busy 1st CPU now reported as 63% busy
- $2^{\rm nd}$, $3^{\rm rd}$ and $4^{\rm th}$ LCPUs each report 12% idle time which is approximate POWER8 Notes

Uplift from SMT2 to SMT4 is about 30% Uplift from SMT4 to SMT8 is about 7% Check published rPerf Numbers

Nigel Griffiths Power7 Affinity - Session 19 and 20 - http://tinyurl.com/newUK-PowerVM-VUG

POWER5/6 vs POWER7 /8 Virtual Processor Unfolding

- Virtual Processor is activated at different utilization threshold for P5/P6 and P7
- P5/P6 loads the 1st and 2nd SMT threads to about 80% utilization and then unfolds a VP
- P7 loads first thread on the VP to about 50% then unfolds a VP
 - Once all VPs unfolded then 2nd SMT threads are used
 - Once 2nd threads are loaded then tertiaries are used
 - This is called raw throughput mode

Why?

Raw Throughput provides the highest per-thread throughput and best response times at the expense of activating more physical cores

- Both systems report same physical consumption
- This is why some people see more cores being used in P7 than in P6/P5, especially if they did not reduce VPs when they moved the workload across.
- HOWEVER, idle time will most likely be higher
- I call P5/P6 method "stack and spread" and P7 "spread and stack"

Scaled Throughput

- P7 and higher with AIX v6.1 TL08 and AIX v7.1 TL02
- · Dispatches more SMT threads to a VP core before unfolding additional VPs
- · Tries to make it behave a bit more like P6
- Raw provides the highest per-thread throughput and best response times at the expense of activating more physical core
- Scaled provides the highest core throughput at the expense of per-thread response times and throughput.

It also provides the highest system-wide throughput per VP because tertiary thread capacity is "not left on the table."

- schedo –p –o vpm_throughput_mode=
 - 0 Legacy Raw mode (default)
 - 1 "Enhanced Raw" mode with a higher threshold than legacy
 - 2 Scaled mode, use primary and secondary SMT threads
 - 4 Scaled mode, use all four SMT threads
 - 8 Scaled mode, use eight SMT threads (POWER8, AIX v7.1 required) Dynamic Tunable
- SMT unfriendly workloads could see an enormous per thread performance degradation

9

Show VP Status on POWER8

```
VSD Thread State
                                                                                                                                                           CPU CPPR VP_STATE FLAGS SLEEP_STATE PROD_TIME: SECS NSECS CEDE_LAT
VSD THREAD STATE FLAGS SLEEP_STATE PROD_TIME: SECS NSECS CEDE_LAT
                                    0 AWAKE
0 SLEEPING
                                                                                                                                                                                                                                   0000000554BA0A9 33BB6FB9 00
00000000554BA0A9 33BB7209 00
00000005554BA0A9 33BB73A3 00
00000005554BA0A9 33BB73BC 02
00000000554BA0A9 33BB73BC 02
00000000554BA0A9 33BB73BC 02
00000000554BA0A9 33BB87BC 02
00000000554BA0A9 33BBBC3D 02
00000000554BA0A9 33BBBC3D 02
00000000554BA0A9 33BBBBC3D 02
                                                                                                                                                            24 11 ACTIVE 0 SLEEPING
25 11 ACTIVE 0 SLEEPING
26 11 ACTIVE 0 SLEEPING
27 11 ACTIVE 0 SLEEPING
28 11 DISABLED 0 SLEEPING
30 11 DISABLED 0 SLEEPING
31 11 DISABLED 0 SLEEPING
31 11 DISABLED 0 SLEEPING
32 11 DISABLED 0 SLEEPING
32 11 DISABLED 0 SLEEPING
32 11 DISABLED 0 SLEEPING
                                                                   33
34
35
                                                                                                                                                                                                                                       00000000554BA0A9 33BBB44E 02
00000000554BA0A9 33BBB53E 02
00000000554BA0A9 33BBB746 02
                                                                                                                                                                       11 DISABLED
                                                                                                                                                                                                        0 SLEEPING
          11 DISABLED 0 SLEEPING
11 DISABLED 0 SLEEPING
11 DISABLED 0 SLEEPING
11 DISABLED 0 SLEEPING
11 DISABLED 0 SLEEPING
11 DISABLED 0 SLEEPING
11 DISABLED 0 SLEEPING
0 DISABLED 0 AWAKE 0
                                                                                                                                                                       11 DISABLED
11 DISABLED
                                                                                                                                                                                                       0 SLEEPING
0 SLEEPING
                                                                          00000000554BA0A9 33BB16A8 02
00000000554BA0A9 33BB1CEC 02
                                                                                                                                                             36
37
38
39
40
                                                                                                                                                                       11 DISABLED
11 DISABLED
                                                                                                                                                                                                       0 SLEEPING
0 SLEEPING
                                                                                                                                                                                                                                        00000000554BA0A9 33BBAA43 02
0000000554BA0A9 33BBAA13 02
                                                                           00000000554BA0A9 33BB1806 02
00000000554BA0A9 33BB1ED6 02
00000000554BA0A9 33BB164B 02
                                                                                                                                                                       11 DISABLED
                                                                                                                                                                                                        0 SLEEPING
                                                                                                                                                                                                                                        00000000554BA0A9 33BBAD66 02
          11 DISABLED 0 SLEEPING
11 DISABLED 0 SLEEPING
                                                                                                                                                                                                                                        00000000554BA0A9 33BBAFC2 02
                                                                                                                                                                                                                                        00000000554BA0A7 2DC515C8 02
                                                                                                                                                           40 11 DISABLED 0 SLEEPING
41 11 DISABLED 0 SLEEPING
42 11 DISABLED 0 SLEEPING
43 11 DISABLED 0 SLEEPING
44 11 DISABLED 0 SLEEPING
45 11 DISABLED 0 SLEEPING
46 11 DISABLED 0 SLEEPING
47 11 DISABLED 0 SLEEPING
47 11 DISABLED 0 SLEEPING
                                                                                                                                                                                                                                       00000000554BA0A7 2DC51557 02
00000000554BA0A9 33BB28B2 02
00000000554BA0A9 33BB2A48 02
00000000554BA0A9 33BB21FB 02
00000000554BA0A9 33BB21FB 02
```

System is SMT8 so CPU0-7 are a VP, CPU8-15 are a VP and so or

FLAGSHIP

TLAGSHIP

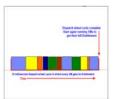
More on Dispatching

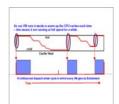
How dispatching works

Example - 1 core with 6 VMs assigned to it

VPs for the VMs on the core get dispatched (consecutively) and their threads run

As each VM runs the cache is cleared for the new VM


When entitlement reached or run out of work CPU is yielded to the next VM Once all VMs are done then system determines if there is time left


Assume our 6 VMs take 6MS so 4MS is left

Remaining time is assigned to still running VMs according to weights VMs run again and so on

Problem - if entitlement too low then dispatch window for the VM can be too low If VM runs multiple times in a 10ms window then it does not run full speed as cache has to be warmed

If entitlement higher then dispatch window is longer and cache stays warm longer - fewer cache misses

Nigel Griffiths Power7 Affinity - Session 19 and 20 - http://tinyurl.com/newUK-

Entitlement and VPs

- Utilization calculation for CPU is different between POWER5, 6 and POWER7
- VPs are also unfolded sooner (at lower utilization levels than on P6 and P5)
- May also see high VCSW in lparstat
- This means that in POWER7 you need to pay more attention to VPs

 You may see more cores activated a lower utilization levels

 But you will see higher idle

 - If only primary SMT threads in use then you have excess VPs
- · Try to avoid this issue by:

 - Reducing VP counts
 Use realistic entitlement to VP ratios

 - 10x or 20x is not a good idea
 Try setting entitlement to .6 or .7 of VPs

 Ensure workloads never run consistently above 100% entitlement

 Too little entitlement means too many VPs will be contending for the cores

 NOTE VIO server entitlement is critical SEAs scale by entitlement not
 - All VPs have to be dispatched before one can be redispatched

 - Performance may (in most cases, will) degrade when the number of Virtual Processors in an LPAR exceeds the number of physical processors The same applies with VPs in a shared pool LPAR these should exceed the cores in the pool

Avoiding Problems

- Stay current
- Known memory issues with 6.1 tl9 sp1 and 7.1 tl3 sp1
- Java 7.1 SR1 is the preferred Java for POWER7 and POWER8
- Java 6 SR7 is minimal on POWER7 but you should go to Java 7
- WAS 8.5.2.2
- Refer to Section 8.3 of the Performance Optimization and Tuning Techniques Redbook SG24-8171
- HMC v8 required for POWER8 does not support servers prior to POWER6
- Remember not all workloads run well in the shared processor pool – some are better dedicated
 - Apps with polling behavior, CPU intensive apps (SAS, HPC), latency sensitive apps (think trading systems)

13

lparstat 30 2 SPP

Iparstat 30 2 output

System configuration: type=Shared mode=Uncapped smt=4 lcpu=72 mem=319488MB psize=17 ent=12.00

%user %sys %wait %idle physc %entc lbusy app vcsw phint 46.8 11.6 0.5 41.1 11.01 91.8 16.3 4.80 28646 738 48.8 10.8 0.4 40.0 11.08 92.3 16.9 4.88 26484 763

Icpu=72 and smt=4 means I have 72/4=18 VPs but pool is only 17 cores - BAD

psize = processors in shared pool

lbusy = %occupation of the LCPUs at the system and user level

app = Available physical processors in the pool

vcsw = Virtual context switches (virtual processor preemptions)

phint = phantom interrupts received by the LPAR

interrupts targeted to another partition that shares the same physical processor i.e. LPAR does an I/O so cedes the core, when I/O completes the interrupt is sent to the core but different LPAR running so it says "not for me"

NOTE – Must set "Allow performance information collection" on the LPARs to see good values for app, etc

Required for shared pool monitoring

Iparstat 30 2 Dedicated

lparstat 30 2 output

System configuration: type=Dedicated mode=Capped smt=4 lcpu=80 mem=524288MB

%user	%sys	%wait	%idl				
16.8	28.7	6.4	48.1				
17.0	29.3	5.8	48.0				

Icpu=4 and smt=80 means I have 80/4=20 cores

Ibusy = %occupation of the LCPUs at the system and user level

lparstat -h 30 2 output

System configuration: type=Dedicated mode=Capped smt=4 lcpu=80 mem=524288MB

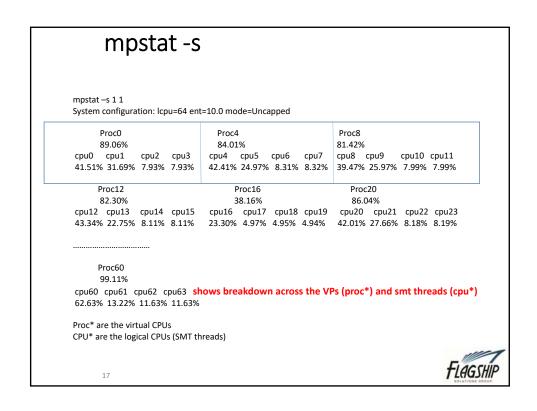
%user	%sys	%wait	%idle	%hypv	hcalls
16.8	29.8	5.4	48.0	61.3	2222545
16.8	30.1	5.1	48.0	61.1	2258600

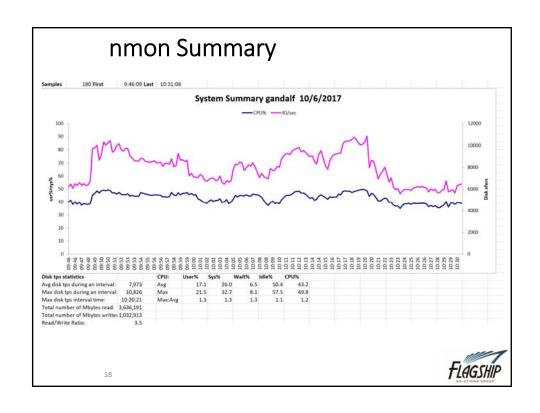
Indicates the percentage of physical processor consumption spent making hypervisor calls.

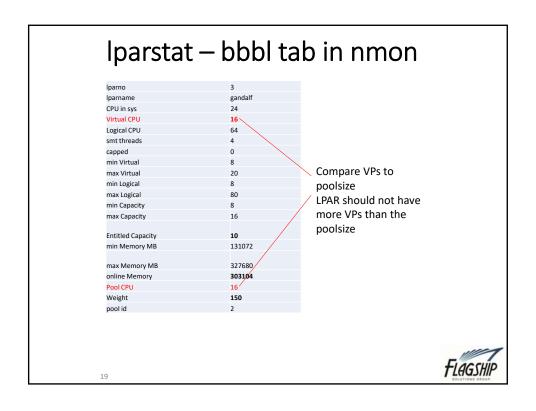
Indicates the average number of hypervisor calls that were started. $^{\rm 15}$

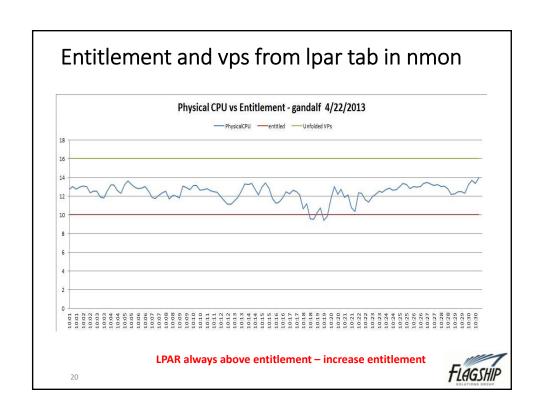
Using sar -mu -P ALL (Power7 & SMT4)

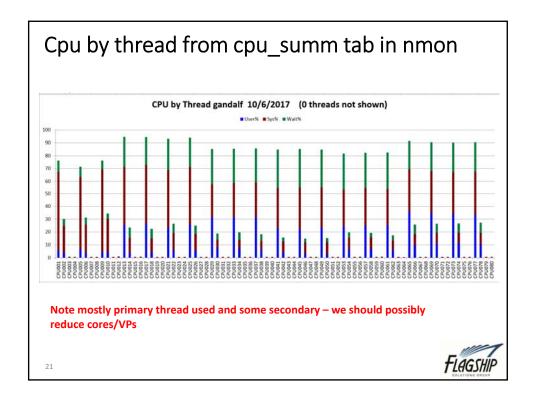
AIX (ent=10 and 16 VPs) so per VP physc entitled is about .63

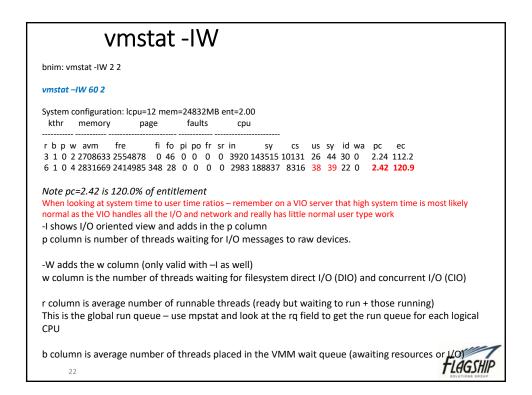

AIX (CIT-10 did 10 VI 3/30 per VI physe cittled is about .03														
System configuration: lcpu=64 ent=10.00 mode=Uncapped														
14:24:31	cpu	%usr	%sys	%wio	%idle	physo	%entc							
Average	0	77	22	0	1	0.52	5.2							
	1	37	14	1	48	0.18	1.8							
	2	0	1	0	99	0.10	1.0							
	3	0	1	0	99	0.10	1.0	.9 physc						
	4	84	14	0	1	0.49	4.9							
	5	42	7	1	50	0.17	1.7							
	6	0	1	0	99	0.10	1.0							
	7	0	1	0	99	0.10	1.0	.86 physc						
	8	88	11	0	1	0.51	5.1							
	9	40	11	1	48	0.18	1.8							
Lines for 10-62 were here														
	63	0	1	0	99	0.11	1.1							
	-	55	11	0	33	12.71	127.1	Above entitlement on average						

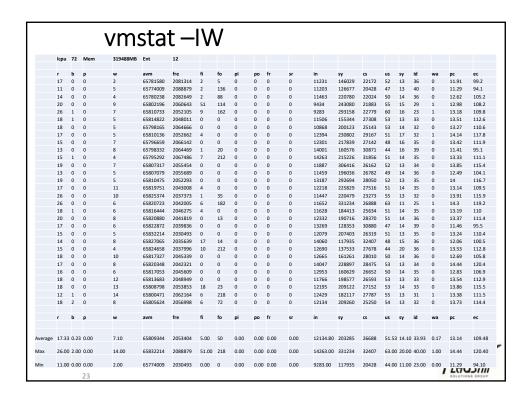

- increase entitlement?


So we see we are using 12.71 cores which is 127.1% of our entitlement $% \left(1\right) =\left(1\right) \left(1$ This is the sum of all the physc lines – cpu0-3 = proc0 = VP0


May see a U line if in SPP and is unused LPAR capacity (compared against entitlement)







Shared Processor Pool Monitoring

Turn on "Allow performance information collection" on the LPAR properties

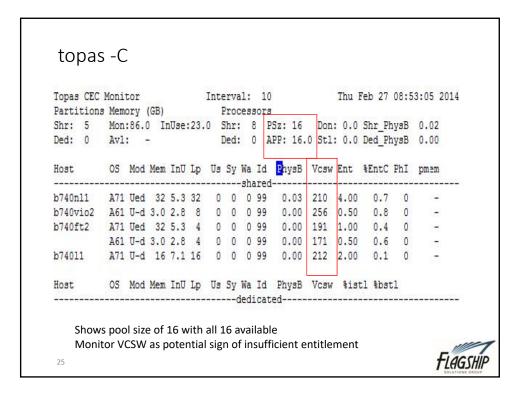
This is a dynamic change

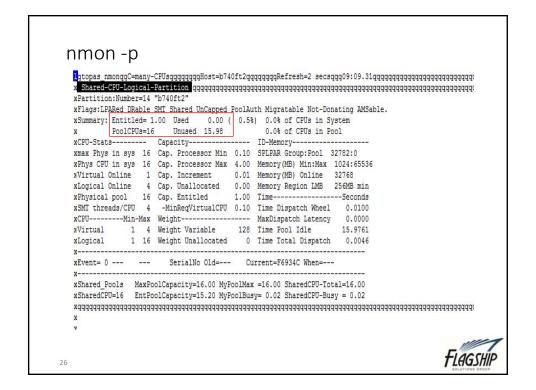
topas -C

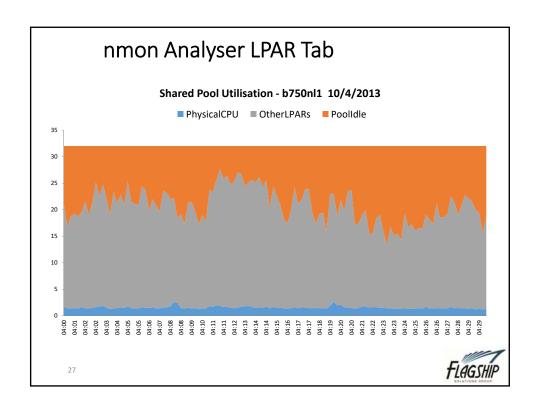
Most important value is app – available pool processors

This represents the current number of free physical cores in the pool

nmon option p for pool monitoring


To the right of PoolCPUs there is an unused column which is the number of free pool cores $% \left(1\right) =\left(1\right) \left(1\right$


nmon analyser LPAR Tab


Iparstat

Shows the app column and poolsize

Memory Types

- Persistent
 - · Backed by filesystems
- Working storage
 - Dynamic
 - Includes executables and their work areas
 - Backed by page space
 - Shows as avm in a vmstat –I (multiply by 4096 to get bytes instead of pages) or as %comp in nmon analyser or as a percentage of memory used for computational pages in vmstat –
 - ALSO NOTE if %comp is near or >97% then you will be paging and need more memory
- Prefer to steal from persistent as it is cheap
- minperm, maxperm, maxclient, lru_file_repage and page_steal_method all impact these decisions

29

Memory with Iru_file_repage=0

- minperm=3
 - Always try to steal from filesystems if filesystems are using more than 3% of memory
- maxperm=90
 - · Soft cap on the amount of memory that filesystems or network can use
 - Superset so includes things covered in maxclient as well
- maxclient=90
 - Hard cap on amount of memory that JFS2 or NFS can use SUBSET of maxperm
 - Iru_file_repage goes away in v7 later TLs
 - It is still there but you can no longer change it

All AIX systems post AIX v5.3 (tl04 I think) should have these 3 set On v6.1 and v7 they are set by default

Check /etc/tunables/nextboot to make sure they are not overridden from defaults on v6.1 and v7 $\,$

page_steal_method

- Default in 5.3 is 0, in 6 and 7 it is 1
- What does 1 mean?
- lru_file_repage=0 tells LRUD to try and steal from filesystems
- · Memory split across mempools
- LRUD manages a mempool and scans to free pages
- 0 scan all pages
- 1 scan only filesystem pages

31

page_steal_method Example

- 500GB memory
- 50% used by file systems (250GB)
- 50% used by working storage (250GB)
- mempools = 5
- So we have at least 5 LRUDs each controlling about 100GB memory
- Set to 0
 - Scans all 100GB of memory in each pool
- Set to 1
 - Scans only the 50GB in each pool used by filesystems
- · Reduces cpu used by scanning
- · When combined with CIO this can make a significant difference

Correcting Paging

From vmstat -v

11173706 paging space I/Os blocked with no psbuf

Isps output on above system that was paging before changes were made to tunables

Page Space Physical Volume Volume Group Size %Used Active Auto Type pagingvg 16384MB 25 yes paging01 hdisk3 yes pagingvg 16384MB 25 yes paging00 hdisk2 Ιv yes hd6 hdisk0 16384MB 25 yes rootvg yes Ιv

Total Paging Space Percent Used Can also use vmstat -I and vmstat -s 49152MB 1%

Should be balanced – NOTE VIO Server comes with 2 different sized page datasets on one hdisk

More than one page volume All the same size including hd6

Page spaces must be on different disks to each other

Do not put on hot disks

Mirror all page spaces that are on internal or non-raided disk

If you can't make hd6 as big as the others then swap it off after boot

All real paging is bad

Memory Breakdown

UNIT is MB - symon -G

virtual available mmode free size inuse pin 512.00 248.28 memory 263.72 56.1 69.2 425.97 Ded pg space 40.0 0.22

work clnt other pers 0 pin 40.8 0 15.3 69.2 194.57 in use

134217728 69135637 65081923 14708504 18129924 memory 10485760 57730 pg space

work pers cInt other 10701576 0 2560 4004368 in use 18129924 0 51005713

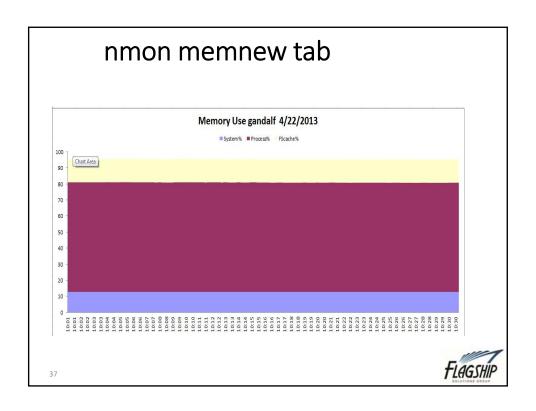
PageSize PoolSize virtual inuse pgsp pin s 4 KB 57730 57657493 5267944 6651780 m 64 KB 717384 0 590035 717384 16 MB 0 0 0 0 S 16 GB

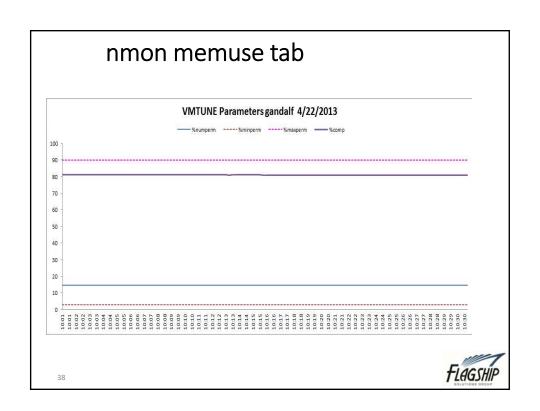
Looking for Problems

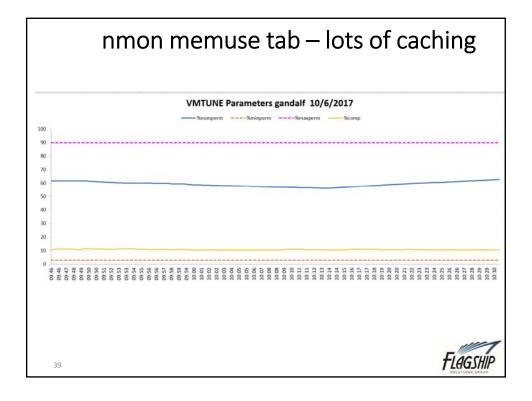
- Issrad –av
- mpstat –d
- topas -M
- svmon
 - Try –G –O unit=auto,timestamp=on,pgsz=on,affinity =detail options
 - Look at Domain affinity section of the report
- Etc etc

35

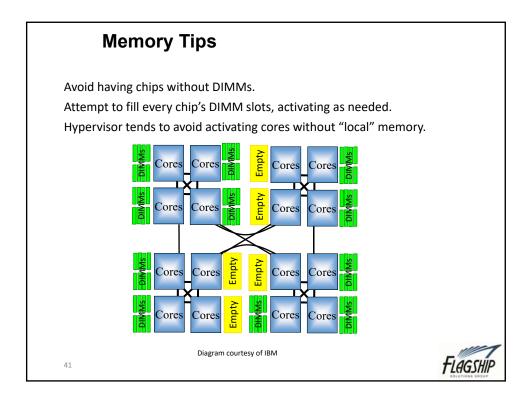
Memory Problems


- Look at computational memory use
 - Shows as avm in a vmstat –I (multiply by 4096 to get bytes instead of pages)
- System configuration: lcpu=48 mem=32768MB ent=0.50


```
    r b p w avm
    fre fi fo pi po fr sr in sy cs us sy id wa pc ec
    0 0 0 0 807668
    7546118
    0 0 0 0 0 0 1 159 161 0 0 99 0 0.01 1.3
```


AVM above is about 3.08GB which is about 9% of the 32GB in the LPAR

- or as %comp in nmon analyser
- or as a percentage of memory used for computational pages in vmstat -v
- NOTE if %comp is near or >97% then you will be paging and need more memory
- Try symon –P –Osortseg=pgsp –Ounit=MB | more
 - This shows processes using the most pagespace in MB
 - You can also try the following:
 - svmon –P –Ofiltercat=exclusive –Ofiltertype=working –Ounit=MB| more



Affinity

- LOCAL SRAD, within the same chip, shows as s3
- NEAR SRAD, within the same node intra-node, shows as s4
- FAR SRAD, on another node inter-node, shows as s5
- Command is Issrad –av or can look at mpstat –d
- Topas M option shows them as Localdisp%, Neardisp%, Fardisp%
- · The further the distance the longer the latency
- Problems you may see
 - · SRAD has CPUs but no memory or vice-versa
 - CPU or memory unbalanced
- Note on single node systems far dispatches are not as concerning
- To correct look at new firmware, entitlements and LPAR memory sizing
- Can also look at Dynamic Platform Optimizer (DPO)

mpstat -d Example from POWER8

b814aix1: mpstat -d

System configuration: lcpu=48 ent=0.5 mode=Uncapped

																local i	near j	far
cpu	CS	ics	bound	rq	push	S3pull	S3grd	S0rd	S1rd	S2rd	S3rd	S4rd	S5rd	ilcs	vlcs	S3hrd S	4hrd S	5hrd
0	82340	11449	1	2	0	0	0	98.9	0.0	0.0	1.1	0.0	0.0 2	3694	120742	100.0	0.0 0	0.0
1	81	81	0	0	0	0	0	0.0	100.0	0.0	0.0	0.0	0.0	9488	9541	100.0	0.0 0	.0
2	81	81	0	0	0	0	0	0.0	100.0	0.0	0.0	0.0	0.0	9501	9533	100.0	0.0	0.0
3	82	82	0	0	0	0	0	1.2	98.8	0.0	0.0	0.0	0.0	9515	9876	100.0	0.0	0.0
4	81	81	0	0	0	0	0	0.0	100.0	0.0	0.0	0.0	0.0	9515	9525	100.0	0.0	0.0
5	81	81	0	0	0	0	0	0.0	100.0	0.0	0.0	0.0	0.0	9522	9527	100.0	0.0	0.0
6	81	81	0	0	0	0	0	0.0	100.0	0.0	0.0	0.0	0.0	9522	9518	100.0	0.0	0.0
7	82	81	0	0	0	0	0	0.0	100.0	0.0	0.0	0.0	0.0	9526	9511	100.0	0.0	0.0

The above is for a single socket system (S814) so I would expect to see everything local (s3hrd)

On a multi socket or multimode pay attention to the numbers under near and far

Starter set of tunables 1

For AIX v5.3

No need to set memory_affinity=0 after 5.3 tl05

MEMORY

vmo -p -o minperm%=3

vmo -p -o maxperm%=90

vmo -p -o maxclient%=90

vmo -p -o minfree=960

We will calculate these We will calculate these vmo -p -o maxfree=1088

vmo-p-o lru file repage=0

vmo -p -o lru_poll_interval=10

vmo -p -o page_steal_method=1

For AIX v6 or v7

Memory defaults are already correctly except minfree and maxfree If you upgrade from a previous version of AIX using migration then you need to check the settings after

vmstat –v Output

3.0 minperm percentage

90.0 maxperm percentage

45.1 numperm percentage

45.1 numclient percentage

90.0 maxclient percentage

1468217 pending disk I/Os blocked with no pbuf

pbufs pagespace

11173706 paging space I/Os blocked with no psbuf 2048 file system I/Os blocked with no fsbuf

JFS

238 client file system I/Os blocked with no fsbuf

NFS/VxFS

39943187 external pager file system I/Os blocked with no fsbuf

JFS2

numclient=numperm so most likely the I/O being done is JFS2 or NFS or VxFS Based on the blocked I/Os it is clearly a system using JFS2

It is also having paging problems

pbufs also need reviewing

vmstat –v Output

Up 45 days

12 memory pools

3.0 minperm percentage

90.0 maxperm percentage

39.1 numperm percentage

39.1 numclient percentage

90.0 maxclient percentage

245 pending disk I/Os blocked with no pbuf pbufs
0 paging space I/Os blocked with no psbuf pagespace
2321 file system I/Os blocked with no fsbuf
484493 client file system I/Os blocked with no fsbuf
2940752 external pager file system I/Os blocked with no fsbuf
3FS2
13.2 percentage of memory used for computational pages

numclient=numperm so most likely the I/O being done is JFS2 or NFS or VxFS Based on the blocked I/Os it is clearly a system using JFS2 It is also having paging problems pbufs also need reviewing

45

vmstat –v Output

uptime

02:03PM up **39 days**, 3:06, 2 users, load average: 17.02, 15.35, 14.27

9 memory pools

3.0 minperm percentage

90.0 maxperm percentage

14.9 numperm percentage

14.9 numclient percentage

90.0 maxclient percentage

66 pending disk I/Os blocked with no pbuf

O paging space I/Os blocked with no psbuf

1972 filesystem I/Os blocked with no fsbuf

527 client filesystem I/Os blocked with no fsbuf

613 external pager filesystem I/Os blocked with no fsbuf

JFS2

numclient=numperm so most likely the I/O being done is JFS2 or NFS or VxFS Based on the blocked I/Os it is clearly a system using JFS2

This is a fairly to a laboratory as it has been used 20 does with favorable as a sec

This is a fairly healthy system as it has been up 39 days with few blockages

FLAGSHIP

Memory Pools and fre column

- fre column in vmstat is a count of all the free pages across all the memory pools
- When you look at fre you need to divide by memory pools
- Then compare it to maxfree and minfree
- This will help you determine if you are happy, page stealing or thrashing
- · You can see high values in fre but still be paging
- You have to divide the fre column by mempools
- In below if maxfree=2000 and we have 10 memory pools then we only have 990 pages free in each pool on average. With minfree=960 we are page stealing and close to thrashing.

kthr memory			page				faults						cpu			
	-															
r b	р	avm	fre	fi	fo	pi	ро	fr	sr	in	sy	cs	us	sy	id wa	
70 30	9 0 8	8552080	9902	75497	9615	5 9	3	84455	239632	18455	280135	91317	42	37	0 20	

Assuming 10 memory pools (you get this from vmstat –v)
9902/10 = 990.2 so we have 990 pages free per memory pool
If maxfree is 2000 and minfree is 960 then we are page stealing and very close to thrashing

47

Calculating minfree and maxfree vmstat -v | grep memory

```
3 memory pools vmo -a | grep free
```

maxfree = 1088 minfree = 960

Calculation is:

minfree = (max (960,(120 * lcpus) / memory pools))
maxfree = minfree + (Max(maxpgahead,j2_maxPageReadahead) * lcpus) / memory pools

So if I have the following:

Memory pools = 3 (from vmo –a or kdb) J2_maxPageReadahead = 128 CPUS = 6 and SMT on so lcpu = 12

So minfree = $(\max(960,(120*12)/3))$ = 1440 / 3 = 480 or 960 whichever is larger And maxfree = minfree + (128*12) / 3 = 960 + 512 = 1472

I would probably bump this to 1536 rather than using 1472 (nice power of 2)

The difference between minfree and maxfree should be no more than 1K er IBM

If you over allocate these values it is possible that you will see high values in the "fre" column of a vmstat and yet you will be paging.

nmon Monitoring

- nmon -ft –AOPV^dMLW -s 15 -c 120
 - Grabs a 30 minute nmon snapshot A is async IO M is mempages

 - t is top processes L is large pages O is SEA on the VIO

 - P is paging space
 V is disk volume group
 d is disk service times
 ^ is fibre adapter stats
 W is workload manager statistics if you have WLM enabled

If you want a 24 hour nmon use:

nmon -ft -AOPV^dMLW -s 150 -c 576

May need to enable accounting on the SEA first – this is done on the VIO chdev –dev ent* -attr accounting=enabled

Can use entstat/seastat or topas/nmon to monitor – this is done on the vios topas –É nmon -O

VIOS performance advisor also reports on the SEAs

Thank you for your time

If you have questions please email me at: jaqui@circle4.com or jlynch@flagshipsg.com

Also check out: http://www.circle4.com/movies/

Don't forget to complete your evaluations!

Useful Links

- Jaqui Lynch Articles
 - http://www.circle4.com/jaqui/eserver.html
- Jay Kruemke Twitter chromeaix
 - https://twitter.com/chromeaix
- Nigel Griffiths Twitter mr nmon
 - https://twitter.com/mr_nmon
- Gareth Coates Twitter power gaz
 - https://twitter.com/power_gaz
- Jaqui's Upcoming Talks and Movies
 - Upcoming Talks
 - http://www.circle4.com/forsythetalks.html
 - Movie replays
 - http://www.circle4.com/movies
- IBM US Virtual User Group
- http://www.tinyurl.com/ibmaixvug
- Power Systems UK User Group
 - http://tinyurl.com/PowerSystemsTechnicalWebinars

FLAGSHIP

51

Useful Links

- HMC Scanner
 - https://www.ibm.com/developerworks/community/wikis/home?la ng=en#!/wiki/Power%20Systems/page/HMC%20Scanner
- Workload Estimator
 - http://ibm.com/systems/support/tools/estimator
- Performance Tools Wiki
 - https://www.ibm.com/developerworks/community/wikis/home?la ng=en#!/wiki/Power%20Systems/page/AIX%20Performance%20Co mmands
 - · Performance Monitoring
 - https://www.ibm.com/developerworks/community/wikis/home?la ng=en#!/wiki/Power%20Systems/page/Performance%20Monitorin g%20Tips%20and%20Techniques
 - Other Performance Tools
 - https://www.ibm.com/developerworks/community/wikis/home?la ng=en#!/wiki/Power+Systems/page/Other+Performance+Tools
 - Includes new advisors for Java, VIOS, Virtualization
- VIOS Advisor
 - https://www.ibm.com/developerworks/community/wikis/home?la ng=en#/wiki/Power%20Systems/page/VIOS%20Advisor

FLAGSHIP

References

- Processor Utilization in AIX by Saravanan Devendran
 - https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en# /wiki/Power%20Systems/page/Understanding%20CPU%20utilization%20on%20Al X
- Rosa Davidson Back to Basics Part 1 and 2 Jan 24 and 31, 2013
 - https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Power%20Systems/page/AIX%20Virtual%20User%20Group%20-%20USA
- SG24-7940 PowerVM Virtualization Introduction and Configuration
 - http://www.redbooks.ibm.com/redbooks/pdfs/sg247940.pdf
- SG24-7590 PowerVM Virtualization Managing and Monitoring
 - http://www.redbooks.ibm.com/redbooks/pdfs/sg247590.pdf
- SG24-8171 Power Systems Performance Optimization
 - http://www.redbooks.ibm.com/redbooks/pdfs/sg248171.pdf
- Redbook Tip on Maximizing the Value of P7 and P7+ through Tuning and Optimization
 - http://www.redbooks.ibm.com/technotes/tips0956.pdf

53

Backup Slides

vmstat -IW on POWER8 in SMT8

b814aix1: vmstat -IW 2 2

System configuration: lcpu=48 mem=32768MB ent=0.50

kthr	memory		page	faults	cpu
rbpw	, avm	fre	fi fo pi po	fr sr in sy cs	us sy id wa pc ec
0000	807668	7546118	0 0 0 0	0 0 1 159 161	0 0 99 0 0.01 1.3
0000	807668	7546118	0 0 0 0	0 0 0 23 217	0 0 99 0 0.01 1.0

Iparstat & mpstat -s POWER8 Mode Example

System configuration: type=Shared mode=Uncapped smt=8 lcpu=48 mem=32768MB psize=2 ent=0.50

%user %sys %wait %idle physc %entc lbusy app vcsw phint

0.0 0.1 0.0 99.9 0.00 0.8 2.3 1.96 244 0 0.0 0.2 0.0 99.8 0.00 1.0 2.3 1.96 257 0

b814aix1: mpstat -s

System configuration: lcpu=48 ent=0.5 mode=Uncapped

Proc0 Proc8 0.00% 0.00%

cpu0 cpu1 cpu2 cpu3 cpu4 cpu5 cpu6 cpu7 cpu8 cpu9 cpu10 cpu11 cpu12 cpu13 cpu14 cpu15 $0.00\% \quad 0.00\% \quad 0.00$

0.00%

cpu16 cpu17 cpu18 cpu19 cpu20 cpu21 cpu22 cpu23 cpu24 cpu25 cpu26 cpu27 cpu28 cpu29 cpu30 cpu31 0.00%

 cpu32
 cpu33
 cpu34
 cpu35
 cpu35
 cpu36
 cpu37
 cpu38
 cpu39
 cpu40
 cpu41
 cpu42
 cpu43
 cpu44
 cpu45
 cpu46
 cpu47

 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.00%
 0.0

Starter set of tunables 2

Explanations for these will be covered in the IO presentation The parameters below should be reviewed and changed (see vmstat –v and lvmo –a later)

PBUFS

Use the new way

JFS2

ioo -p -o j2_maxPageReadAhead=128

(default above may need to be changed for sequential) –

dynamic

Difference between minfree and maxfree should be > that this

value

j2_dynamicBufferPreallocation=16

Max is 256. 16 means 16 x 16k slabs or 256k Default that may need tuning but is dynamic

Replaces tuning j2_nBufferPerPagerDevice until at max.

Network changes in later slide

57

symon

svmon -G -O unit=auto -i 2 2

Unit: auto

size inuse free pin virtual available mmode memory 16.0G 8.26G 7.74G **5.50G** 10.3G 7.74G Ded 12.0G 2.43G pg space work pers clnt other 5.01G OK 4.11M 497.44M pin in use 8.06G 0K 202.29M

nuse 8.06G UK 202.29

Unit: auto

pin size inuse free virtual available mmode memory 16.0G 8.26G 7.74G 5.50G 10.3G 7.74G Ded pg space 12.0G 2.43G work pers clnt other 5.01G 0K 4.11M 497.44M 8.06G 0K 202.29M in use

Keep an eye on memory breakdown especially pinned memory. High values mean someone has pinned something

symon

svmon -G -O unit=auto,timestamp=on,pgsz=on,affinity=detail -i 2 2

nit: auto Timestamp: 16:27:26

size inuse free pin virtual available mmode memory 8.00G 3.14G 4.86G 2.20G 2.57G 5.18G Ded-E pg space 4.00G 10.4M

Domain affinity free used total filecache lcpus
0 4.86G 2.37G 7.22G 567.50M 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
28 29 30 31

Unit: auto Timestamp: 16:27:28

 size
 inuse
 free
 pin
 virtual
 available
 mmode

 memory
 8.00G
 3.14G
 4.86G
 2.20G
 2.57G
 5.18G
 Ded-E

 pg space
 4.00G
 10.4M

work pers clnt other pin 1.43G 0K 0K 794.95M in use 2.57G 0K 589.16M

Domain affinity free used total filecache lcpus
0 4.86G 2.37G 7.22G 567.50M 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
28 29 30 31

FLAGSHIP