
JOURNAL OF CHEMICAL PHYSICS VOLUME 110, NUMBER 18 8 MAY 1999
Self-diffusion in single-file zeolite membranes is Fickian at long times
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We have developed a theory for self-diffusion in single-file Langmuirian zeolites of finite extent,
which has been validated by open system kinetic Monte Carlo simulations. Our theory is based on
a two-stage, Fickian diffusion mechanism, wherein a vacancy must traverse the entire file length to
produce particle displacements of one lattice spacing. For times shorter than the vacancy diffusion
time, tc , particle transport proceeds via the nonFickian, single-file diffusion mode, with
mean-square displacements increasing with the square-root of time. For times longer thantc ,
however, we find that self-diffusion in single-file systems is completely described by Fick’s laws.
We find that the fraction of time in the single-file diffusion mode scales inversely with file length
for long files, suggesting that Fickian self-diffusion dominates transport in longer single-file
zeolites. Through correlations among the particle movements, the single-file self-diffusivity is
sensitive to sorption limitations for short files, and scales inversely with file length for long files.
Experimental verification of the theory by pulsed field gradient NMR and tracer zero-length column
experiments is discussed. ©1999 American Institute of Physics.@S0021-9606~99!51518-3#
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I. INTRODUCTION

Single-file diffusion is a one-dimensional transport pr
cess involving particles that cannot pass each other.1 The
strict ordering of particles correlates motion to such an ex
that Fick’s laws are considered invalid for single-fi
systems.2 Indeed, the absence of particle exchange lead
the well-known prediction1 that mean-square displacemen
in infinite, single-file systems increase with the square-r
of time, in contrast to normal diffusion where they increa
linearly with time. Single-file diffusion phenomena have r
cently been observed experimentally in one-dimensio
zeolites,3–5 and also in biological ion channels.6 While these
experiments underscore the importance of single-file di
sion, they also remind us that actual systems are finite
extent, in contrast to the models that predict anomal
mean-square displacements. To bridge this gap, we rep
new theory of single-file diffusion in finite systems, which
validated by open system kinetic Monte Carlo~KMC!
simulations.7 In this article, we examine how fundament
system parameters determine the crossover from single
diffusion to Fickian diffusion in finite materials.

Several models of transport through finite materials h
recently been proposed for elucidating fundamental asp
of permeation through biological and zeolitic channe
MacElroy and Suh developed a two-reservoir molecular
namics ~MD! algorithm for modeling permeation throug
uncorrugated channels, finding diffusivities that scale
L21/2, where L is the channel length.8 Chou reported an
analytical theory for osmotic flow through single-file pore
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finding that osmosis can be sensitive to solute–solv
interactions.9 Hahn and Ka¨rger derived expressions fo
single-file diffusion in finite zeolites with various bounda
conditions.10 They found that the self-diffusion coefficien
DS , associated with center-of-mass motion of partic
within a single-file scales asL21, in contrast to the predic-
tion of MacElroy and Suh.8

We have recently reported open system KMC calcu
tions, exploring the effect of anisotropy on self-diffusio
through two-dimensional lattice models of zeoli
membranes.7 Simulating transport properties with KMC fa
cilitates modeling of systems that are controlled by ra
event dynamics, by accessing time scales that are unre
able by MD. The anisotropy of the membrane in our pre
ous study was defined byh[ky /kx , wherekx andky are the
elementary jump rates in the transmembrane and in-p
directions, respectively. We used steady-state tracer cou
permeation ~TCP! as a method for calculating self
diffusivities in finite systems,11 by applying Fick’s first law,
J52DS¹u, to the fluxes and concentration gradients e
tracted from TCP simulations. For membranes withh50,
where counterpermeation is strictly single-file, we found th
self-diffusivities in the bulk of the membrane exhibit norma
Fickian behavior by being independent of position. Howev
we also found that the anomalous character of single-
diffusion is manifested by self-diffusivities that become i
versely proportional to membrane thickness for thick me
branes, in agreement with the theory of Hahn and Ka¨rger.10

In the present article, we investigate finite single-file sy
tems in more detail to determine precisely under what c
ditions self-diffusion can be described by Fick’s laws. W
focus on Langmuirian host–guest systems, which invo
regular lattices of identical sorption sites where particl
il:
5 © 1999 American Institute of Physics
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particle interactions are ignored, except for exclusion of m
tiple site occupancy. Such model systems exhibit Langm
adsorption isotherms, and give single-component trans
diffusivities that are independent of loading.12 We develop a
compound~two-stage! Fickian diffusion theory to explain
the surprising applicability of Fick’s laws, yielding an an
lytical formula for theL-dependence of the single-file sel
diffusion coefficient. This approach is more general th
Hahn and Ka¨rger’s,10 because our model is valid for arbitrar
file lengths, regardless of whether transport is sorpti
limited ~smallL) or diffusion-limited~largeL). We simulate
mean-square displacements with KMC to test our single-
theory under transient conditions. We find that for sh
times the mean-square displacement is proportional tot1/2, as
required by theories of single-file diffusion in infinite sy
tems. However, at times longer than a ‘‘crossover time,’10

the mean-square displacement becomes proportional tt,
with a Fickian self-diffusivity in quantitative agreement wi
our compound diffusion model.

The remainder of this paper is organized as follows:
Sec. II we present our general diffusion theory, in Sec. III
describe the simulation methodology, and in Sec. IV
present our theory and simulation results in the contex
single-file and Fickian diffusion. In Sec. V we discuss t
experimental consequences of our results, and in Sec. V
offer concluding remarks.

II. DIFFUSION THEORY

In this section, we will derive an expression for the Fic
ian counterdiffusivity of two components that have simi
transport properties within single-file zeolites, as a funct
of file length.

A. Review of two-component diffusion theory

We define the spatially and temporally varying occupa
cies of componentsA and B, coadsorbed in a Langmuiria
zeolite as follows:uA,n(t) is the probability of finding an
A-particle in siten of the file at timet. In the simulations
described below, we consider a spatial ensemble of inde
dent files arranged vertically~see Fig. 1!. With this arrange-
ment,uA,n(t) can also be interpreted as the number of latt
sites filled withA-particles at timet in columnn, divided by
the number of sites in columnn; uB,n(t) is defined similarly
for B-particles.uT,n(t) is the total fractional occupancy o
columnn at time t, defined asuT,n(t)5uA,n(t)1uB,n(t). In
what follows, we will omit the explicit dependence on co
umn n and timet, e.g.,uA,n(t)→uA , unless clarity requires
otherwise.

It is well established11,13–17that for two-component sys
tems, the scalar form of Fick’s law should be replaced b
vector equation of the form:

S JA

JB
D52S DAA DAB

DBA DBB
D S ¹uA

¹uB
D . ~1!

When speciesA and B have identical diffusive properties,
the matrix in Eq.~1! is asymmetric, and has two eigenvecto
that correspond to the two eigenmodes of diffusion for d
ferently labeled, identical particles. The codiffusion eige
l-
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mode involvesA and B diffusing together, with driving
forces proportional to their occupancies, so that the labe
of particles does not affect their transport. In this eigenmo
the flux of componentA can be written in a scalar form o
Fick’s first law:

JA52DA
1¹uA , ~2!

and likewise for componentB. The apparent diffusivities
DA

1 andDB
1 , for the codiffusion eigenmode are given by:

DA
15DB

15D0 , ~3!

where D0 is the single-component transport diffusivity
which is independent of loading for Langmuiria
systems.11,18 Hence, in the codiffusion eigenmode, the tw
components diffuse together as if the other component w
not present.

The second eigenmode corresponds to equimolar co
terdiffusion, where the flux ofA is equal and opposite to th
flux of B at constantuT , so that:

¹uB52¹uA . ~4!

The apparent diffusivities for the counterdiffusion eige
mode are given by:

DA
15DB

15D0~12uT! f ~uT!5DS~uT!, ~5!

where f (uT) is the so-called correlation factor~vide infra!,
andDS(uT) is the self-diffusion coefficient.D0 is the single-
component transport diffusivity, and isalso the self-diffusion
coefficient at infinite dilution, i.e., where all jump attemp
are successful. (12uT) is the fraction of jumps that are suc
cessful at finite loadings, because they are directed tow
vacancies. This factor accounts for the reduction inDS at the
level of mean-field theory, which ignores correlations b
tween successive jumps of a particle. Correlations arise
cause a successful jump always leaves a vacancy at the
ticle’s original position, thereby increasing the probabili
that the particle will return there. Correlations are accoun
for by the factorf (uT), which is less than one at finite load
ings. Equation~5! demonstrates the correspondence betw

FIG. 1. Vacancy transport through anL56 single-file system, with
A-particles~dark! and B-particles~light!. Steps~i! through ~vii ! represent
the passage of an ‘‘A-vacancy’’ from right to left, giving particle displace
ment of one lattice spacing in the opposite direction.
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self-diffusion and equimolar counterdiffusion of identical, l
belled particles, e.g., tracer counterpermeation~TCP!.7 We
exploit this correspondence below, to investigate the ap
cability of Fick’s laws to self-diffusion in single-file system
of finite extent.

B. Finite difference formulation of diffusion

The kinetic theory for sorption and diffusion in a Lan
muirian host–guest system is based on a finite differe
formulation ~FDF! of diffusion,7,11,18 which we briefly de-
scribe below for equimolar counterdiffusion. The FDF nod
represent adsorption sites, suggesting an FDF grid spa
equal to the distance between sites,Dx, which we chose as
the fundamental distance unit in our model. For tw
component diffusion in the interior of the lattice, we ca
write:

duA,n

dt
5DS~uT!~uA,n212uA,n!2DS~uT!

3~uA,n2uA,n11!. ~6!

For transport in column 1, we have:

duA,1

dt
5n~12uT!2kduA,12DS~uT!~uA,12uA,2!, ~7!

while in columnL, we obtain:

duA,L

dt
52kduA,L2DS~uT!~uA,L2uA,L21!. ~8!

The counterdiffusivity,DS , depends on the total concentr
tion, uT , which is constant throughout the zeolite when f
cusing on the counterdiffusion eigenmode.

In the present article, we investigate the validity of Eq
~6!–~8! for modeling counterdiffusion in finite, single-file
systems. Equations~6!–~8!, with DS replaced byD0 , have
been shown to accurately represent single-component tr
port diffusion in single-file systems, for all times, position
occupancies, and concentration gradients.18 However, since
single-component transport diffusion corresponds to the
diffusion eigenmode, while self-diffusion corresponds to t
counterdiffusion eigenmode, it is not obvious whether E
~6!–~8! can model self-diffusion in finite, single-file system
Our simulation results presented below show that Eqs.~6!–
~8! can indeed reproduce self-diffusion in finite, single-fi
systems at sufficiently long times. In the remainder of S
II, we develop a theory for the self-diffusivity,DS , in single-
file zeolites of finite extent, finding thatDS scales inversely
with L for long files.

C. Compound diffusion

In this section we explore a compound~two-stage!
mechanism for diffusion in single-file systems, wherein p
ticle displacements of one lattice spacing are produced b
vacancy traversing the entire length of the file. We begin
considering a single-file system of lengthL56 with tracer
counterpermeation boundary conditions, as shown in Fig
The system is exposed to a phase of pureA on the left-hand
side, and a phase of pureB on the right-hand side. We imag
li-
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ine that the system is at steady-state with total occupa
close to one, so that on average there will be no more tha
single vacancy in the file. The starting configuration sho
in Fig. 1~i! has all lattice sites filled with particles. As
result of the pure-component boundary conditions, there
contiguous region ofA-particles~dark! on the left-hand side
of the file, and a contiguous region ofB-particles~light! on
the right-hand side. There can be no mixing of theA andB
regions within the file, because each specie enters from o
one side, and the single-file constraint prohibits particle
changes. If the single-file constraint is not rigorously e
forced, then the compound diffusion mechanism discus
here is not the only diffusion mode, and normal particle d
fusion dominates for sufficiently large systems.7,10

The arrow in Fig. 1~i! indicates that the left-most particl
in the file is about to desorb from the file, with ratekd . This
desorption produces a vacancy in the lattice that mo
throughout the file by exchanging with adjacent particles,
shown in Fig. 1~ii !–~vi!. The sequence of configuration
shown in Fig. 1~ii !–~vii ! can be reached by single partic
jumps in the directions indicated by the arrows, with ratekx

per jump. Although Sholl and Fichthorn have suggested
importance of correlated cluster dynamics instead of sin
particle jumps,19 we are presently considering lattices wi
well-separated sites, i.e., Langmuirian host–guest syste
which lack the attractive guest–guest interactions modele
Ref. 19. The transition from configuration~vii ! to ~viii ! in
Fig. 1 occurs when aB-particle from the externalB-phase
replaces the vacancy in Fig. 1~vii !, which occurs with raten.
We note that the reverse of the transitions shown in Fig
can also occur with equal probability.

Each of the states in Fig. 1~i!–~viii ! is separated by an
elementary jump event. The entire sequence in Fig. 1 en
a single vacancy entering on theA-side of the file, traveling
through the file and subsequently leaving on theB-side. The
net effect of the vacancy transport through the file is d
placement of the particles by one lattice spacing to the l
Figure 2 shows all possible configurations of theL56 file
without vacancies. The net effect of the sequence show
Fig. 1 is to move the system between states~d! and ~e! in
Fig. 2. The other configurations in Fig. 2 are also separa
by a sequence of vacancy moves similar to that shown
Fig. 1. Thus, we have shown that, in the absence of co
lated cluster dynamics, a compound diffusion mechan

FIG. 2. Particle transport through anL56 single-file system. Adjacen
states~d!–~e! are separated by the vacancy moves in Fig. 1.
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operates in single-file systems, which requires a vacanc
diffuse the entire file length to generate particle displa
ments of one lattice spacing.

We now consider a thought experiment where vacan
within the lattice are labeled by the side of the lattice
which they were created, e.g., anA-vacancy is created in th
transition from steps~i! to ~ii ! in Fig. 1. In fact, anA-vacancy
is created whenever a particle of either type desorbs into
A-phase. In Fig. 1~vii !, the A-vacancy exchanges with
B-particle from the externalB-phase. With this interpreta
tion, we have a steady-state flux ofA-vacancies from left to
right through the lattice, and vice versa for theB-vacancies,
while unlabeled vacancies have no net flux.

D. Derivation assuming local thermodynamic
equilibrium

We now derive theL-dependence ofDS assuming local
thermodynamic equilibrium ~vide infra!. The flux of
A-vacancies is given by Fick’s first law:

JA
V52DA

V¹uA
V , ~9!

where¹uA
V is theA-vacancy concentration gradient, andDA

V

is the apparent diffusivity ofA-vacancies. At infinite vacancy
dilution, DA

V is equal toD0 , the single-component particl
transport diffusivity. Hence, at steady-state there is a lin
concentration gradient ofA-vacancies across the system.
we assume that the edge sites are in local thermodyna
equilibrium with the external phases, then all particles a
vacancies in the left-most site of the file are eith
A-particles orA-vacancies, since the external left-hand pha
is pureA. As such, the assumption of local thermodynam
equilibrium changes the constant chemical potential bou
ary conditions outside the zeolite to constant concentra
boundary conditions in the edge sites of the zeolite, i
uA,1

V 5(12uT) anduA,L
V 50. Hence, applying Fick’s law, Eq

~2!, across the file with a linear vacancy concentration g
dient, we find that:

JA
V52D0S uA,L

V 2uA,1
V

L21 D 5D0S 12uT

L21 D . ~10!

The flux ofB-particles though the interior of the file ca
be obtained from Fick’s first law, giving:

JB52DB
1¹uB , ~11!

where¹uB is the localB-particle concentration gradient, an
DB

1 is the local apparent diffusivity.DB
1 determines the rate

at which the single-file system can move between adjac
states in Fig. 2. At steady-state, the flux ofB-particles is
uniform throughout the file, and is related to the flux
A-vacancies by the following ansatz:

JB52
JA

V

L21
. ~12!

The factor of (L21)21 arises because anA-vacancy must
traverse the length of the file, as shown in Fig. 1, to comp
the transition between any of the adjacent states in Fig
Equations~11! and ~12! can be combined to obtain the flu
of B-particles, giving:
to
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DB
15

JA
V

~L21!¹uB
, ~13!

whereJA
V is given by Eq.~10!. If we assume again that th

edge sites are in local thermodynamic equilibrium with t
external phases, then the concentrations ofB-particles in the
left-most and right-most sites of the file are equal touB,1

50 anduB,L5uT , respectively. Furthermore, if we assum
that the apparentB-particle diffusivity is constant throughou
the system,7 then the steady-state particle concentration p
files will be linear, giving¹uB5uT /(L21). Combining this
with Eqs.~10! and ~13!, we find that:

DB
15

D0~12uT!

~L21!uT
. ~14!

When (L21) is replaced withL, Eq. ~14! becomes the ex-
pression recently obtained by Hahn and Ka¨rger, for the self-
diffusion coefficient associated with center-of-mass mot
of particles within the file.10 Hahn and Ka¨rger obtained their
expression by analyzing the Gaussian statistics of sev
correlated random walkers in a single-file system. Our d
vation of Eq. ~14! shows that Hahn and Ka¨rger’s result is
consistent with assuming local thermodynamic equilibriu
at the file boundaries, which becomes valid in the long-
limit as we show below.

E. General derivation

A more general expression can be obtained by relax
the assumption that the file edges are in local thermodyna
equilibrium with the external phases. Instead, we analyze
fluxes produced by the constant chemical potentials of
external phases. The flux ofA-vacancies entering the left
hand edge of the file from the external phase is given by

JA
V5kduT,12nuA,1

V . ~15!

The first term on the right is the rate ofA-vacancy creation in
column 1, while the second term is the rate ofA-vacancy
destruction, due toA-particle insertion into column 1 from
the external phase. At the right-hand edge, the flux
A-vacancies is given by:

JA
V5nuA,L

V , ~16!

which is the rate at whichA-vacancies leave the right-han
edge by exchanging withB-particles from theB-phase. The
flux of A-vacancies throughout the interior of the file is give
by Fick’s first law:

JA
V52D0S uA,L

V 2uA,1
V

L21 D . ~17!

At steady-state, these three fluxes in Eqs.~15!–~17! must be
equal, giving the result:

JA
V5

D0uTkd

n~L21!12D0
. ~18!

This expression for theA-vacancy flux holds regardless o
the presence of local thermodynamic equilibrium at the
edges. Equation~18! has two limiting forms, depending upo
whetherA-vacancy transport through the system is sorptio
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limited or diffusion-limited. In the limit thatn(L21)@D0 ,
A-vacancy transport is diffusion-limited, Eq.~18! reduces to
Eq. ~10!, and the assumption of local thermodynamic eq
librium at the edge sites becomes valid. Alternatively, wh
n(L21)!D0 , A-vacancy transport is sorption-limited, an
Eq. ~18! reduces toJA

V5uTkd/2.
From Fig. 6~b! of Ref. 7, we note that the local appare

diffusivity of B-particles,DB
15DS , is constant throughou

the interior of the file. Hence, we can approximate t
B-particle flux through the interior of the system as:

JB52DSS uB,L2uB,1

L21 D , ~19!

where DB
15DS(uT ,L) is the self-diffusivity of the

B-particles in a file of lengthL at total concentrationuT . At
the left-hand edge of the system, the flux is given by:

JB52kduB,1 , ~20!

while the right-hand edge flux is given by:

JB5kduB,L2n~12uT,L!. ~21!

We can eliminate the edge concentrations from Eqs.~19!–
~21! by equating them at steady-state, giving:

JB52
DS~12uT!n

kd~L21!12DS
. ~22!

Combining the expressions for the flux ofB-particles, Eqs.
~12!, ~18!, and~22!, we obtain:

DS5
D0uTkd

2~L21!

~12uT!~L21!n@n~L21!12D0#22D0uTkd
. ~23!

Equation~23! is the main theoretical result of this article, an
will be compared with simulation under various counterd
fusion conditions below. In the limit thatL→`, Eq. ~23!
reduces to Eq.~14!, since vacancy transport becom
diffusion-limited. Equation~23! is more general than Hah
and Kärger’s expression,10 because Eq.~23! is valid for ar-
bitrary file lengths, i.e., regardless of whether vacancy tra
port is sorption-limited~small L) or diffusion-limited ~large
L).

FIG. 3. File length dependence of the scaled diffusivity, from simulat
~open circles!, present theory~solid line!, and theory in Ref. 10~dashed
line!.
-
n

s-

III. SIMULATION METHODOLOGY

We will now briefly summarize the lattice model param
etrization and simulation methodology. We refer the rea
to our previous article7 for a complete description of the
model zeolite system and simulation techniques used. Fig
1 shows a number of single-file systems containing eit
A-particles~dark! or B-particles~light!. Each adsorption site
is indicated by a square, which can contain either
A-particle, aB-particle, or be vacant. Double occupancy
adsorption sites is prohibited, and adjacent particles do
interact with each other in our model, except for exclusion
multiple occupancy. Apart from the labeling, theA- and
B-particles are identical with respect to their adsorptive a
diffusive properties. At equilibrium, the zeolite is filled wit
particles up to a fractional occupancy,ueq, given by the
Langmuir isotherm:

ueq5
1

11kd /n
, ~24!

wheren is the insertion rate of particles from external phas
at either edge of the zeolite, as shown by the arrow in F
1~vii !, and kd is the desorption rate of particles from edg
sites, as shown in Fig. 1~i!.

For consistency with our previous two-dimension
study,7 the fundamental time scale in our present mode
t51/4kx , which is half the average residence time of
isolated particle in the one-dimensional system conside
here. The desorption rate is chosen to bekd5kx/100, to re-
flect the fact that heats of adsorption exceed diffusion a
vation energies. Since site-to-site hopping and particle
sorption are both thermally activated processes in our mo
governed by Arrhenius temperature dependencies,
choice ofkx /kd corresponds to experimental data for cycl
hexane in silicalite,20 at a temperature ofT5656 K, and with
a time scale oft5231027 s. In all the simulations reported
below, the steady-state combined occupancy was chose
beueq50.9, by selecting the appropriate insertion frequen
n.7

IV. SIMULATION RESULTS

In this section, we will present simulation results th
test the usefulness of Fick’s first and second laws applie
single-file, counterdiffusion problems. We have considere
variety of initial and boundary conditions, including stead
state tracer counterpermeation~TCP!, transient TCP, trace
exchange boundary conditions that model tracer zero-len
column ~TZLC! experiments, as well as mean-square d
placement~MSD! calculations for counterdiffusing tagge
particles. We have found that all these single-file syste
give results consistent with Fick’s laws at long times co
pared with the characteristic time for vacancy diffusion. B
low we detail only the steady-state TCP simulations a
MSD calculations.

A. Steady-state simulations

Figure 3 shows TCP diffusivities plotted as the sca
correlation factor, L f 5LDS /D0(12uT), obtained from
KMC simulations ~circles! for single-file systems withL
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510 to 200. The dashed line in Fig. 3 is obtained by eva
ating Eq. ~14!,10 while the solid line is obtained from Eq
~23!. The diffusion correlation factor,f , is scaled byL to
remove the inverse length dependence of the expression
tained by Hahn and Ka¨rger,10 so that their expression is rep
resented by the horizontal dashed line. We plotL f against
inverse file length, 1/L, so that the limiting form asL→`
appears as the intercept at 1/L50.

The L510 to 100 simulations were obtained from 25
to 16 000 statistically independent files, depending on
simulation times required. The error bars for these d
points are smaller than, or comparable to, the size of
symbols. The equilibration time of these systems is prop
tional to L3, so that the time scale of theL5200 simulation
is approximately an order of magnitude longer than that
the L5100 simulations. As a result, a relatively small num
ber ~100! of statistically independent files were averaged
L5200, resulting in the relatively large error bar in Fig. 3

Figure 3 shows that our single-file theory, Eq.~23!,
quantitatively predicts the apparent single-file diffusiviti
calculated by KMC. Figure 3 also shows that the theory
Hahn and Ka¨rger10 over-estimates the diffusivity in finite
systems, because it neglects sorption limitations in the tra
port of vacancies. From Eq.~18!, we see that the rationL/D0

determines whether vacancy transport is limited by sorp
or diffusion. For the simulations shown in Fig. 3,nL/D0

ranges from 0.9 forL510 to 18 forL5200. WhennL/D0

'1, the system is neither sorption-limited nor diffusio
limited, and Eq.~23! should be used to predict the compou
diffusivity. However, whennL/D0@1, vacancy transport be
comes diffusion-limited, the assumption of local thermod
namic equilibrium becomes valid at the edges, and Eq.~14!
becomes a useful approximation.

B. Transient simulations

While the agreement between Eq.~23! and the steady-
state simulations shown in Fig. 3 is impressive, the ques
now arises as to whether our compound diffusion theo
Eqs.~6!–~8! and~23!, can reproducetransientdiffusion phe-
nomena. To investigate this, we simulated transient T
tracer exchange as occurs in TZLC experiments, and MS
of tagged particles as functions of time. All of these syste
showed good agreement with the FDF at sufficiently lo
times. For brevity, we discuss only the MSD calculatio
below.

An L560 single-file system was initially filled with par
ticles up to an average occupancy ofuT50.9 throughout.
Particles in column 30 were labeled asB-particles, while the
remainder were labeled asA-particles. Att50, both edges of
the system were exposed to a phase ofA-particles with an
insertion rate that maintained the equilibriumA-occupancy at
uA50.9. The external phases are assumed to be well st
and of infinite extent, so that whenB-particles leave the file
they cannot return. With these initial and boundary con
tions, the diffusion solution for theB-particles in the zeolite
is entirely within the counterdiffusion eigenmode. As suc
the matrix diffusion equation, Eq.~1!, can be replaced by a
scalar FDF given by Eqs.~6!–~8!, with DS given by Eq.~23!.

Figure 4 showsB-particle concentration profiles at thre
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times separated by 30 000t. The symbols represent averag
KMC simulation data at the specified times, while the lin
indicate the FDF solution using the diffusivity predicted b
Eq. ~23!. The initial concentration spike develops into
Gaussian peak that spreads with time according to Fic
second law. The excellent fit between theory and simulat
in Fig. 4 indicates that the spreading ofB-particles is gov-
erned by Fick’s second law on these time scales, with
diffusivity predicted by Eq.~23!. Hence, except for the fac
that the diffusivity in Eq.~23! depends on file length, self
diffusion in single-file systems is Fickian in the sense th
Fick’s first and second laws are obeyed for a file of giv
length.

It is well known1,2,10that the MSD of particles in single
file systems of infinite extent evolves ast1/2. The excellent
agreement in Fig. 4 between simulation and Fick’s laws s
gests, however, that the MSD in our finite single-file syste
may evolvelinearly with time at long times, consistent with
normal Fickian diffusion. In order to investigate this, w
have calculated the time dependence of the MSD for
simulation times, as shown in Fig. 5. Figure 5 shows t
except for very short times~see inset!, the MSD is linear in

FIG. 4. Concentration profiles during self-diffusion in anL560 single-file
system, from simulation~symbols! and the diffusion equation~solid lines!.

FIG. 5. Mean-square displacements ofB particles in anL560 single-file
system, from simulation~solid line! and linear fit at long times~dashed line!.
Inset is enlargement at short times.
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time. The dashed line is a least-squares linear fit to the
betweent530 000t and t560 000t, consistent with Ein-
stein’s equation:

^R2~ t !&52DSt, ~25!

where^R2(t)& is the MSD for a one-dimensional system.
The fact that the MSD is linear for long times in Fig. 5

further evidence that the system studied here diffuses in
cordance with Einstein’s and Fick’s laws. As can be seen
the inset to Fig. 5, the increase in the mean-square displ
ment is more rapid at short times, but approaches the lin
regime at longer times. During the time shown in Fig.
essentially none of the tagged particles has left the file~cf.
Fig. 4!. Once several particles leave the ensemble of fi
Einstein’s equation becomes less useful in describing
system. However, the FDF of the diffusion problem rema
valid at all times, and can be used in a straightforward m
ner to determine the net fluxes throughout the file and at
file edges.

In order to examine the short-time behavior in more d
tail, we have replotted the MSD of Fig. 5 as the solid line
the log-log plot in Fig. 6. The dotted lines have slope eq
to 1 on the log-log plot, indicating that the MSD is propo
tional to t, whereas the dashed line has a slope of1

2, indicat-
ing that the MSD is proportional tot1/2. The short-time be-
havior is consistent with mean-field theory, where the dot
line is given by Einstein’s equation withDS5D0(12uT).
This is because at very short times (t,t), the tagged par-
ticles have made at most one jump attempt, so that the
fusivity is determined by the fraction of initial jump attemp
that are successful, which is given by the mean-field fac
(12uT). At long times, the MSD in Fig. 6~middle dotted
line! is again given by Einstein’s equation withDS given by
Eq. ~23!, giving transport that is dominated by compou
diffusion. At intermediate times, transport is achieved by
single-file mode that operates as if the file were of infin
extent, with an MSD given by:

FIG. 6. Log-log plot of mean-square displacements ofB particles in anL
560 single-file system, from simulation~solid line!, mean-field diffusion
theory giving slope of 1~left-most dotted line!, single-file diffusion theory

giving slope of
1
2 ~dashed line!, and compound diffusion theory giving slop

of 1 ~middle and right-most dotted lines!.
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^R2~ t !&52Ft1/2, ~26!

whereF is the single-file mobility given by:10,16

F5
12uT

uT
AD0

p
. ~27!

The crossover time between single-file diffusion a
compound diffusion is given by the intersection of th
dashed and dotted lines in Fig. 6, which can be obtained
equating Eqs.~25! and ~26!. For long files, we can use Eq
~14! for the self-diffusivity, giving the following crossove
time:

tc5
~L21!2

pD0
. ~28!

If we replace (L21) with L, this expression is the same a
that obtained by Hahn and Ka¨rger,10 and is proportional to
the characteristic time for vacancy diffusion through t
system.21 For shorter files, where vacancy transport is a
influenced by sorption limitations, Eqs.~23! and~26! should
be used to determinetc . tc defines what we mean by ‘‘long
times’’ in the title and throughout this article, indicatin
when diffusion in single-file systems becomes Fickian. F
large systems, where Eq.~14! is valid, the MSD at the cross
over time is given by:

^R2~ tc!&5
2

p S 12uT

uT
DL. ~29!

The root MSD at the crossover time,Rc[A^R2(tc)&}L1/2,
specifies the average distance when diffusion becomes F
ian.

We can also calculate the crossover time from me
field diffusion to single-file diffusion, which is given bytc

51/pD0uT
2 . For our system this quantity is of order unit

indicting that the crossover between mean-field and sin
file diffusion occurs attc>t, which is the average time i
takes a particle to attempt a jump within the lattice. The
two crossover times separate the MSD into three time
gimes, determined by the extent of correlations in the mot
of particles. For short times, motion is uncorrelated and
given by the mean-field diffusivity. At intermediate time
correlations in the particle motion spread out as if the
were of infinite extent. In this regime, Einstein’s equati
must be replaced with Eq.~26! because the MSD is propor
tional to t1/2. However, once the extent of correlations
comparable to the file length, a global compound diffusi
mechanism dominates, and the MSD is once again gove
by Einstein’s equation, with a diffusivity that is greatly d
minished by correlations according to Eq.~23!.

The long-range correlations in compound diffusion ar
because moving all the particles by only one lattice spac
requires a vacancy to traverse the entire file length. In
process, a particle is adsorbed at one edge, and a pa
desorbs at the other edge. Hence, the motion of any par
is influenced by the file edges, forcing the boundary con
tions to influence the diffusivity ofB-particles long before
they reach the file edges.

Figure 6 also includes a line for a zeolite of the si
typically used in diffusion experiments, i.e.,L510 000, cor-
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responding to a ZSM-5 crystallite of about 10mm in the file
direction. The crossover from single-file to compound diff
sion occurs at a time that is well approximated by Eq.~28!.
Thus, as the file length increases, the observation window
single-file diffusion also increases. In the next section,
discuss the experimental implications of these findings.

V. DISCUSSION

In this article we make two different predictions abo
single-file transport. The first is embodied in Eq.~23!, that
the counterdiffusivity scales as 1/L for sufficiently large sys-
tems. Second, the MSD makes a transition from being p
portional to t1/2, to being proportional tot, in the time it
takes a vacancy to traverse a zeolite particle. This cross
time, tc , determines the beginning of the long-time regim
when diffusion in single-file systems is Fickian, and hen
determines the maximum time regime when single-file dif
sion can be observed in finite systems.

It is interesting to consider whether PFG NMR measu
ments of the MSD in single-file systems can detect the cro
over from single-file to compound diffusion. This should
possible for files that are short enough to bring the crosso
time into the experimental observation window, which is
1–100 ms.2 Performing PFG NMR measurements in t
compound diffusion regime may be complicated by interf
ences from zeolite particle boundaries, and from spin-lat
relaxation.

Although the duration of single-file diffusion increas
with file length, the relative importance of single-file motio
decreases with file length. This becomes clear by analyz
the fraction of time that particles spend single-file diffusi
while adsorbed in a zeolite crystallite. This fraction is giv
by tc /t intra, wheretc is the crossover time andt intra is the
intracrystalline residence time,2 which scales asL2/DS .
Since tc}L2 while DS}1/L for long files, we see that the
fraction of time in single-file diffusion mode scales as 1L
for long files. Ironically, while single-file diffusion is more
easily measured in longer files, compound diffusion becom
the dominant transport process in larger zeolite particles

The most direct way of testing the theoretical predictio
for the compound diffusivity as given by Eq.~23!, is to mea-
sure the long-time counter-diffusivity of guest molecules
zeolite single crystals of varying file lengths, using mac
scopic techniques such as TZLC or TCP, or using a te
nique that measures the MSD such as PFG NMR. The res
of Hahn and Ka¨rger,10 as well as ours, predict that the diffu
sivity will become inversely proportional to thickness f
large systems. This experiment is challenging because i
quires defect-free, single crystals of various sizes. Anoth
more practical method would be to compare the codiffusiv
and counterdiffusivity for a given host–guest system
defect-free single crystal~s! of one size. The codiffusivity
could be measured by uptake or ZLC, while the counter
fusivity could be measured by TZLC or PFG NMR. O
theory predicts that the codiffusivity will be many orders
magnitude larger than the counterdiffusivity. For example
the Langmuirian single-file zeolite considered here, ass
ing uT50.9 and L510 000, corresponding to a 10mm
ZSM-5 crystallite, the single-component transport diffusiv
-
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is five orders of magnitude greater than the compound di
sivity. To achieve this differential between the co- and cou
terdiffusivities, events contrary to single-filing, such as p
ticle jumps between files or particle exchanges within a fi
must be rare on a time scale comparable with the cross
time between single-file diffusion and compound diffusio
If such events are frequent on this time scale, then the co
terdiffusivity will become ‘‘normal’’ in the sense that th
diffusivity will become independent of file length for suffi
ciently large crystals.7,10

VI. CONCLUDING REMARKS

We have presented a theory for self-diffusion in sing
file zeolites of finite extent, which has been validated
extensive open system kinetic Monte Carlo~KMC! simula-
tions. We have focused on modeling zeolite host–guest
tems exhibiting Langmuir isotherms. Our theory is based
a compound~two-stage! diffusion mechanism, wherein a va
cancy must traverse the entire file length to produce part
displacements of one lattice spacing. In the first stage,
cancy transport through the lattice is governed by Fick’s fi
law with constant diffusivity,D0 . In the second stage, pa
ticle transport within the counterdiffusion mode is also go
erned by Fick’s first law, with a diffusivity that is much les
than D0 . Through correlations in the movement of all pa
ticles in the compound diffusion mode, a particle jump
one lattice spacing feels the edges of the file, so that bou
ary resistances can modify the counterdiffusivity if vacan
transport is sorption-limited.

The theory, which was derived from an analysis
steady-state tracer counter-permeation~TCP!, is shown to
apply to a more general class of systems, including trans
counterdiffusion problems at long times. Examples explo
by KMC simulations include mean-square displaceme
~MSDs! of tagged particles as measured by PFG-NMR
periments, and tracer exchange as occurs in tracer z
length column~TZLC! experiments. In general, we find tha
self-diffusion in finite, single-file systems is completely d
scribed by Fick’s laws at times that are well below intr
crystalline residence times, with diffusivities that depe
upon file length.

In order to test our single-file diffusion theory, we hav
simulated diffusion over eight orders of magnitude in tim
to investigate the short-, medium-, and long-time behavio
single-file systems of finite extent. At short times, the MS
increases linearly with time, according to Einstein’s equ
tion, with a slope given by the mean-field self-diffusivity. A
intermediate times, the MSD is proportional to the squa
root of time, with a slope determined by the single-file m
bility. At longer times, the MSD is once again proportion
to time according to Einstein’s equation, with a greatly r
duced diffusivity predicted by our compound diffusio
theory. For long files, where vacancy transport is diffusio
limited, this diffusivity becomes inversely proportional t
file length, in agreement with the previously publish
theory of Hahn and Ka¨rger.10 This dependence on file lengt
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makes counterdiffusion many orders of magnitude slow
than codiffusion in single-file zeolites of practical size. F
short files, however, vacancy transport can also be influen
by sorption limitations. Our theory provides a generalizat
of Hahn and Ka¨rger’s treatment,10 since our expression i
valid for arbitrary file lengths, i.e., regardless of whether v
cancy transport is sorption-limited~small L) or diffusion-
limited ~largeL).

We have identified a crossover time that separates
single-file and compound diffusion modes. This time is p
portional to the square of the system size, showing that
experimental window for observing single-file diffusion in
creases with systems size. However, the fraction of time
particles spend in the single-file mode, while adsorbed i
zeolite crystallite, scales inversely with file length for lon
files. Thus, while single-file diffusion is more easily me
sured in longer files, compound diffusion becomes the do
nant transport process in larger zeolite particles.

The theory and simulations presented here relate to h
occupancy, defect-free files with open ends. In future wo
we plan to investigate the applicability of the theory to sy
tems with lower equilibrium occupancy. Furthermore, sin
the compound diffusion mechanism discussed here is se
tive to any resistance that alters vacancy fluxes, we pla
study the effects of various kinds of disorder on transp
through strongly anisotropic zeolites.
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