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Self-diffusion in single-file zeolite membranes is Fickian at long times
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We have developed a theory for self-diffusion in single-file Langmuirian zeolites of finite extent,
which has been validated by open system kinetic Monte Carlo simulations. Our theory is based on
a two-stage, Fickian diffusion mechanism, wherein a vacancy must traverse the entire file length to
produce particle displacements of one lattice spacing. For times shorter than the vacancy diffusion
time, t., particle transport proceeds via the nonFickian, single-file diffusion mode, with
mean-square displacements increasing with the square-root of time. For times longég,than
however, we find that self-diffusion in single-file systems is completely described by Fick’s laws.
We find that the fraction of time in the single-file diffusion mode scales inversely with file length
for long files, suggesting that Fickian self-diffusion dominates transport in longer single-file
zeolites. Through correlations among the particle movements, the single-file self-diffusivity is
sensitive to sorption limitations for short files, and scales inversely with file length for long files.
Experimental verification of the theory by pulsed field gradient NMR and tracer zero-length column
experiments is discussed. ®999 American Institute of PhysidsS0021-96069)51518-3

I. INTRODUCTION finding that osmosis can be sensitive to solute—solvent
interactions’ Hahn and Keger derived expressions for
Single-file diffusion is a one-dimensional transport pro-single-file diffusion in finite zeolites with various boundary
cess involving particles that cannot pass each dtfiie  conditions® They found that the self-diffusion coefficient,
strict ordering of particles correlates motion to such an extenbg, associated with center-of-mass motion of particles
that Fick's laws are considered invalid for single-file within a single-file scales as™?, in contrast to the predic-
systemg. Indeed, the absence of particle exchange leads téion of MacElroy and Sufi.
the well-known predictiohthat mean-square displacements  We have recently reported open system KMC calcula-
in infinite, single-file systems increase with the square-rootions, exploring the effect of anisotropy on self-diffusion
of time, in contrast to normal diffusion where they increasethrough two-dimensional lattice models of zeolite
linearly with time. Single-file diffusion phenomena have re-membrane$.Simulating transport properties with KMC fa-
cently been observed experimentally in one-dimensionatilitates modeling of systems that are controlled by rare
zeolites} > and also in biological ion channéldivhile these  event dynamics, by accessing time scales that are unreach-
experiments underscore the importance of single-file diffuable by MD. The anisotropy of the membrane in our previ-
sion, they also remind us that actual systems are finite ipus study was defined by=k, /k,, wherek, andk, are the
extent, in contrast to the models that predict anoma|0u@|ementary jump rates in the transmembrane and in-plane
mean-square displacements. To bridge this gap, we reportdirections, respectively. We used steady-state tracer counter-
new theory of single-file diffusion in finite systems, which is permeation (TCP) as a method for calculating self-
validated by open system kinetic Monte Carl&MC) diffusivities in finite systems$! by applying Fick’s first law,
simulations’ In this article, we examine how fundamental J=—-DgV4, to the fluxes and concentration gradients ex-
system parameters determine the crossover from single-filgacted from TCP simulations. For membranes witk: 0,
diffusion to Fickian diffusion in finite materials. where counterpermeation is strictly single-file, we found that
Several models of transport through finite materials haveself-diffusivities in the bulk of the membrane exhibit normal,
recently been proposed for elucidating fundamental aspectsickian behavior by being independent of position. However,
of permeation through biological and zeolitic channels.we also found that the anomalous character of single-file
MacElroy and Suh developed a two-reservoir molecular dydiffusion is manifested by self-diffusivities that become in-
namics (MD) algorithm for modeling permeation through versely proportional to membrane thickness for thick mem-
uncorrugated channels, finding diffusivities that scale agranes, in agreement with the theory of Hahn andgs'®
L~Y2 whereL is the channel length.Chou reported an In the present article, we investigate finite single-file sys-
analytical theory for osmotic flow through single-file pores, tems in more detail to determine precisely under what con-
ditions self-diffusion can be described by Fick's laws. We
3Author to whom correspondence should be addressed. Electronic maif0CUS On Langmuirian host—guest systems, which involve
auerbach@chem.umass.edu regular lattices of identical sorption sites where particle—
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particle interactions are ignored, except for exclusion of mul-
tiple site occupancy. Such model systems exhibit Langmuir
adsorption isotherms, and give single-component transport
diffusivities that are independent of loadiffgWe develop a
compound(two-stage Fickian diffusion theory to explain
the surprising applicability of Fick's laws, yielding an ana-
lytical formula for theL-dependence of the single-file self-
diffusion coefficient. This approach is more general than
Hahn and Keger's° because our model is valid for arbitrary
file lengths, regardless of whether transport is sorption-
limited (smallL) or diffusion-limited(largeL). We simulate
mean-square displacements with KMC to test our single-file
theory under transient conditions. We find that for short
times the mean-square displacement is proportiong3oas
required by theories of single-file diffusion in infinite sys- _ , ,
tems. However, at times longer than a “crossover tim8,” i'G' L. Vacancy transport through ab=6 single-file system, with
. . -particles(dark and B-particles(light). Steps(i) through (vii) represent
the mean-square displacement becomes proportiona) to e passage of anA-vacancy” from right to left, giving particle displace-
with a Fickian self-diffusivity in quantitative agreement with ment of one lattice spacing in the opposite direction.
our compound diffusion model.
The remainder of this paper is organized as follows: in

Sec. Il we present our general diffusion theory, in Sec. llI We ode involvesA and B diffusing together, with driving

describe the simulation methodology, and in Sec. IV we, . . - .
: ) . orces proportional to their occupancies, so that the labeling
present our theory and simulation results in the context o;

single-file and Fickian diffusion. In Sec. V we discuss theof particles does not affect their transport. In this eigenmode,

. : the flux of componenA can be written in a scalar form of
experimental consequences of our results, and in Sec. VI WEick's first law:
offer concluding remarks. '
JA:_DXVGA, (2)

II. DIFFUSION THEORY and likewise for componenB. The apparent diffusivities,

) . ) ) . ~ Da andDg, for the codiffusion eigenmode are given by:
In this section, we will derive an expression for the Fick-

ian counterdiffusivity of two components that have similar ~ Da=Dg =Do, 3

transport properties within single-file zeolites, as a functionyhere D, is the single-component transport diffusivity,
of file length. which is independent of loading for Langmuirian
A. Review of two-component diffusion theory systems*® Hence, in the codiffusion eigenmode, the two

) ) ) components diffuse together as if the other component were
We define the spatially and temporally varying occupan-

) ) P ot present.
cies of componenté and B, coadsorbed in a Langmuirian The second eigenmode corresponds to equimolar coun-
zeolite as follows:6, ,(t) is the probability of finding an

Y . ! , , terdiffusion, where the flux of is equal and opposite to the
A-particle in siten of the file at timet. In the simulations

. . ) : flux of B at constant);, so that:
described below, we consider a spatial ensemble of indepen-

dent files arranged verticallsee Fig. 1 With this arrange- VOg=—V0a. (4)
ment, 6, n(t) can also be interpreted as the number of latticerhe apparent diffusivities for the counterdiffusion eigen-
sites filled withA-particles at time in columnn, divided by  10de are given by:

the number of sites in columm; 6g (t) is defined similarly . N

for B-particles. 67 ,(t) is the total fractional occupancy of Da=Dg=Do(1-67)f(61)=Ds(67), (5

columnn at timet, defined asir,n(t) = 0an(t) + 5.n(t). IN wheref(¢y) is the so-called correlation factévide infra),
what follows, we will omit the explicit dependence on col- andDg(#y) is the self-diffusion coefficienDy is the single-
umnn and timet, e.9.,0an(t)— 6, unless clarity requires  component transport diffusivity, and asothe self-diffusion
otherwise. _ coefficient at infinite dilution, i.e., where all jump attempts
Itis well estabhsheb"l?i‘”that for two-component sys-  are successful. (2 ) is the fraction of jumps that are suc-
tems, the scalar form of Fick’s law should be replaced by &essful at finite loadings, because they are directed towards
vector equation of the form: vacancies. This factor accounts for the reductioB inat the
In Daa Das)(V, level of mean—_fielq theory, which_ignores corr.elation.s be-
3 b D V. (1)  tween successive jumps of a particle. Correlations arise be-
B BA BB B cause a successful jump always leaves a vacancy at the par-
When speciedA and B haveidentical diffusive properties, ticle’s original position, thereby increasing the probability
the matrix in Eq(1) is asymmetric, and has two eigenvectorsthat the particle will return there. Correlations are accounted
that correspond to the two eigenmodes of diffusion for dif-for by the factorf(6;), which is less than one at finite load-
ferently labeled, identical particles. The codiffusion eigen-ings. Equatior(5) demonstrates the correspondence between
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self-diffusion and equimolar counterdiffusion of identical, la- .|.|.|.|‘|. a
belled particles, e.g., tracer counterpermeatio@P).” We
exploit this correspondence below, to investigate the appli-
cability of Fick’s laws to self-diffusion in single-file systems
of finite extent.

B. Finite difference formulation of diffusion

The kinetic theory for sorption and diffusion in a Lang-
muirian host—guest system is based on a finite difference
formulation (FDF) of diffusion, 18 which we briefly de-

scribe below for equimolar counterdiffusion. The FDF nodesFIG. 2. Particle transport through dn—6 single-file system. Adjacent

represent adsorption sites, suggesting an FDF grid spaci%tes(d)_(e) are separated by the vacancy moves in Fig. 1.
equal to the distance between sitAx, which we chose as

the fundamental distance unit in our model. For two-

component diffusion in the interior of the lattice, we can ) )
write: ine that the system is at steady-state with total occupancy

close to one, so that on average there will be no more than a

60pn —D(6:)(8 — 0n.)—Dg(6r) single vacancy in the file. The starting configuration shown
ot~ DslOr)(Oan-17Onn) ~Ds(br in Fig. 1() has all lattice sites filled with particles. As a
X (0r ) ©) result of the pure-component boundary conditions, there is a
An - YAn+1/- contiguous region of-particles(dark on the left-hand side
For transport in column 1, we have: of the file, and a contiguous region Bfparticles(light) on
50 the right-hand side. There can be no mixing of fh@ndB
Al_ (1= 607) — kg0 1— Ds(67)(0a1— O 2), 7) regions within the file, because each specie enters from only
ot ’ ' ' one side, and the single-file constraint prohibits particle ex-
while in columnL, we obtain: changes. If the single-file constraint is not rigorously en-
forced, then the compound diffusion mechanism discussed
S0a. = —KkgOa L —De(67)(OaL— Oar_1). (8) here is not the only diffusion mode, and normal particle dif-
ot ' ' ' fusion dominates for sufficiently large systefn.
The counterdiffusivityDs, depends on the total concentra- "€ arrow in Fig. 1) indicates that the left-most particle
tion, 67, which is constant throughout the zeolite when fo-in the file is about to desorb from the file, with rdtg. This
cusing on the counterdiffusion eigenmode. desorption produces a vacancy in the lattice that moves

In the present article, we investigate the validity of Egs.throughout the file by exchanging with adjacent particles, as
(6)—(8) for modeling counterdiffusion in finite, single-fle Shown in Fig. lii)—(vi). The sequence of configurations
systems. Equationgg)—(8), with D replaced byD,, have ~ Shown in Fig. _1||)—_(vu)_ca_n be reached by single particle
been shown to accurately represent single-component tranbMPs in the directions indicated by the arrows, with riate
port diffusion in single-file systems, for all times, positions, Per Jump. Although Sholl and Fichthorn have suggested the
occupancies, and concentration gradiéftslowever, since importance of correlated cluster dynamics instead of single
single-component transport diffusion corresponds to the coParticle jumps,® we are presently considering lattices with
diffusion eigenmode, while self-diffusion corresponds to theell-separated sites, i.e., Langmuirian host-guest systems,
counterdiffusion eigenmode, it is not obvious whether EqsWhich lack the attractive guest—guest interactions modeled in
(6)—(8) can model self-diffusion in finite, single-file systems. R_ef. 19. The transition fror_n configuratiaii) to (viii) in
Our simulation results presented below show that Egs- ~ F19: 1 occurs when @-particle from the externaB-phase
(8) can indeed reproduce self-diffusion in finite, single-file "éPlaces the vacancy in Fig(li), which occurs with rate.
systems at sufficiently long times. In the remainder of SecYVe note that the reverse of the transitions shown in Fig. 1
II, we develop a theory for the self-diffusivitRs, in single- €& also occur with equal probability.

file zeolites of finite extent, finding thddg scales inversely Each of the states in Fig.(i)-(viii) is separated by an
with L for long files. elementary jump event. The entire sequence in Fig. 1 entails

a single vacancy entering on tideside of the file, traveling
through the file and subsequently leaving on Biside. The
net effect of the vacancy transport through the file is dis-
In this section we explore a compoung@wo-stag¢ placement of the particles by one lattice spacing to the left.
mechanism for diffusion in single-file systems, wherein par-Figure 2 shows all possible configurations of the 6 file
ticle displacements of one lattice spacing are produced by @ithout vacancies. The net effect of the sequence shown in
vacancy traversing the entire length of the file. We begin byFig. 1 is to move the system between stat@sand (e) in
considering a single-file system of length=6 with tracer Fig. 2. The other configurations in Fig. 2 are also separated
counterpermeation boundary conditions, as shown in Fig. lby a sequence of vacancy moves similar to that shown in
The system is exposed to a phase of pAren the left-hand Fig. 1. Thus, we have shown that, in the absence of corre-
side, and a phase of puBeon the right-hand side. We imag- lated cluster dynamics, a compound diffusion mechanism

C. Compound diffusion
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operates in single-file systems, which requires a vacancy to JX
diffuse the entire file length to generate particle displace- D§=m, (13
B

ments of one lattice spacing.
We now consider a thought experiment where vacanciewhereJ; is given by Eq.(10). If we assume again that the
within the lattice are labeled by the side of the lattice onedge sites are in local thermodynamic equilibrium with the
which they were created, e.g., Aavacancy is created in the external phases, then the concentrationB-@farticles in the
transition from step$) to (i) in Fig. 1. In fact, am®A-vacancy  left-most and right-most sites of the file are equal g,
is created whenever a particle of either type desorbs into thee0 and g = 61, respectively. Furthermore, if we assume
A-phase. In Fig. (vii), the A-vacancy exchanges with a thatthe apparer-particle diffusivity is constant throughout
B-particle from the externaB-phase. With this interpreta- the systeni,then the steady-state particle concentration pro-
tion, we have a steady-state flux Afvacancies from left to files will be linear, givingV 6= 61/(L—1). Combining this
right through the lattice, and vice versa for tBevacancies, Wwith Egs.(10) and(13), we find that:

while unlabeled vacancies have no net flux. . Do(1-61)

BT (L—1)6; °

When (L —1) is replaced with_, Eq. (14) becomes the ex-
pression recently obtained by Hahn andrdfex, for the self-

We now derive thd_-dependence dDg assuming local diffusion coefficient associated with center-of-mass motion
thermodynamic equilibrium (vide infra). The flux of  of particles within the fil¢® Hahn and Kager obtained their
A-vacancies is given by Fick’s first law: expression by analyzing the Gaussian statistics of several

V=_pVv Y 9) correlated random walkers in a single-file system. Our deri-

A ATTA vation of Eq.(14) shows that Hahn and Kger's result is
whereV HX is the A-vacancy concentration gradient, aﬁd consistent with assuming local thermodynamic equilibrium
is the apparent diffusivity of\-vacancies. At infinite vacancy at the file boundaries, which becomes valid in the long-file
dilution, DX is equal toDg, the single-component particle limit as we show below.
transport diffusivity. Hence, at steady-state there is a linear
concentration gradient oh-vacancies across the system. If o
we assume that the edge sites are in local thermodynamfc: General derivation
equilibrium with the external phases, then all particles and A more general expression can be obtained by relaxing
vacancies in the left-most site of the file are eitherthe assumption that the file edges are in local thermodynamic
A-particles orA-vacancies, since the external left-hand phasequilibrium with the external phases. Instead, we analyze the
is pureA. As such, the assumption of local thermodynamicfluxes produced by the constant chemical potentials of the
equilibrium changes the constant chemical potential boundexternal phases. The flux @&-vacancies entering the left-
ary conditions outside the zeolite to constant concentratiomand edge of the file from the external phase is given by:
boundary conditions in the edge sites of the zeolite, i.e., v
OX 1= (1—67) and 6% | =0. Hence, applying Fick's law, Eq. Ja=kgbra=vops. (19
(2), across the file with a linear vacancy concentration graThe first term on the right is the rate Afvacancy creation in

(14)

D. Derivation assuming local thermodynamic
equilibrium

dient, we find that: column 1, while the second term is the rate Afvacancy
o — gV 1—6 destruction, due té\-particle insertion into column 1 from
JXZ_DO( Al A'l>— O( T)_ (10  the external phase. At the right-hand edge, the flux of
L-1 L-1 A-vacancies is given bhy:
The flux of B-particles though the interior of the file can V_ oV
. X : . Ja=vb, ., (16
be obtained from Fick’s first law, giving: '
. which is the rate at whict-vacancies leave the right-hand
Jg=—-DgVg, (11

edge by exchanging witB-particles from theB-phase. The
whereV 65 is the localB-particle concentration gradient, and flux (_)f A-vz_;lcancies throughout the interior of the file is given
Dy is the local apparent diffusivityD,; determines the rate by Fick's first law:

at which the single-file system can move between adjacent gV — gV
states in Fig. 2. At steady-state, the flux Bfparticles is I=-D, A’L%l/ﬂ) (17)
uniform throughout the file, and is related to the flux of
A-vacancies by the following ansatz: At steady-state, these three fluxes in E4$)—(17) must be
JX equal, giving the result:
=17 (12) v DobrKy 18

=
The factor of (—1) ! arises because ai-vacancy must A v(L=1)+2D,
traverse the length of the file, as shown in Fig. 1, to complet&his expression for thé\-vacancy flux holds regardless of
the transition between any of the adjacent states in Fig. Zhe presence of local thermodynamic equilibrium at the file
Equations(11) and(12) can be combined to obtain the flux edges. EquatiofiL8) has two limiting forms, depending upon
of B-particles, giving: whetherA-vacancy transport through the system is sorption-
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lll. SIMULATION METHODOLOGY

We will now briefly summarize the lattice model param-
etrization and simulation methodology. We refer the reader
to our previous article for a complete description of the
model zeolite system and simulation techniques used. Figure
1 shows a number of single-file systems containing either
A-particles(dark) or B-particles(light). Each adsorption site
is indicated by a square, which can contain either an
A-particle, aB-particle, or be vacant. Double occupancy of
adsorption sites is prohibited, and adjacent particles do not
interact with each other in our model, except for exclusion of
multiple occupancy. Apart from the labeling, th#e and
B-particles are identical with respect to their adsorptive and
diffusive properties. At equilibrium, the zeolite is filled with

FIG. 3. File length dependence of the scaled diffusivity, from simulation particles up to a fractional occupancyeq, given by the

(open circley present theorysolid line), and theory in Ref. 1Qdashed
line).

limited or diffusion-limited. In the limit thatv(L —1)>D,,
A-vacancy transport is diffusion-limited, EL8) reduces to

Eq. (10), and the assumption of local thermodynamic equi-
librium at the edge sites becomes valid. Alternatively, when
v(L—1)<Dy, A-vacancy transport is sorption-limited, an

Eq. (18) reduces taly = 6-kg/2.

From Fig. &b) of Ref. 7, we note that the local apparent
diffusivity of B-particles,Dg=Dsg, is constant throughout
the interior of the file. Hence, we can approximate the

B-particle flux through the interior of the system as:

0L~ 0s1
JB:—Ds(T |

where Dg=Dg(67,L) is the self-diffusivity of the
B-particles in a file of length. at total concentratiod+. At
the left-hand edge of the system, the flux is given by:

(19

Jg=— kdeB,la (20)
while the right-hand edge flux is given by:
Jg=Kgbg,L—v(1— 67 ). (21

We can eliminate the edge concentrations from Ej9)—
(21) by equating them at steady-state, giving:
Dg(1—67)v

Je= " j (L-1)+ 2D

(22)
Combining the expressions for the flux Bfparticles, Eqs.
(12), (18), and(22), we obtain:
. Dobrkg(L—1)

ST (1-67)(L—1)v[r(L—1)+2Dy]—2Dgb7ky"

(23

Langmuir isotherm:

1

Oe™ Tokglv’

(24)

wherev is the insertion rate of particles from external phases
at either edge of the zeolite, as shown by the arrow in Fig.
1(vii), andky is the desorption rate of particles from edge

d sites, as shown in Fig.(D.

For consistency with our previous two-dimensional
study’ the fundamental time scale in our present model is
7=1/4,, which is half the average residence time of an
isolated particle in the one-dimensional system considered
here. The desorption rate is chosen tokhe k,/100, to re-
flect the fact that heats of adsorption exceed diffusion acti-
vation energies. Since site-to-site hopping and particle de-
sorption are both thermally activated processes in our model,
governed by Arrhenius temperature dependencies, this
choice ofk, /ky corresponds to experimental data for cyclo-
hexane in silicalité? at a temperature of =656 K, and with
a time scale off=2x10""s. In all the simulations reported
below, the steady-state combined occupancy was chosen to
b% 0eq= 0.9, by selecting the appropriate insertion frequency,
V.

IV. SIMULATION RESULTS

In this section, we will present simulation results that
test the usefulness of Fick’s first and second laws applied to
single-file, counterdiffusion problems. We have considered a
variety of initial and boundary conditions, including steady-
state tracer counterpermeatiOiCP), transient TCP, tracer
exchange boundary conditions that model tracer zero-length
column (TZLC) experiments, as well as mean-square dis-
placement(MSD) calculations for counterdiffusing tagged
particles. We have found that all these single-file systems

Equation(23) is the main theoretical result of this article, and give results consistent with Fick’s laws at long times com-
will be compared with simulation under various counterdif- pared with the characteristic time for vacancy diffusion. Be-

fusion conditions below. In the limit thdt —o, Eq. (23)

low we detail only the steady-state TCP simulations and

reduces to Eq.(14), since vacancy transport becomesMSD calculations.

diffusion-limited. Equation(23) is more general than Hahn

and Kager's expressiof® because Eq(23) is valid for ar-

bitrary file lengths, i.e., regardless of whether vacancy trans-

port is sorption-limitedsmallL) or diffusion-limited (large
L).

A. Steady-state simulations

Figure 3 shows TCP diffusivities plotted as the scaled
correlation factor, Lf=LDg/Dy(1— 67), obtained from
KMC simulations (circleg for single-file systems with.
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=10 to 200. The dashed line in Fig. 3 is obtained by evalu- ' ' ' | heory (FOF)
ating Eq.(14),1° while the solid line is obtained from Eq. 008} n o KMC t-30,000¢]
(23). The diffusion correlation factorf, is scaled byl to \ . EMS :ggggg’
remove the inverse length dependence of the expression ob- ;

tained by Hahn and KagerZ° so that their expression is rep-

resented by the horizontal dashed line. We plétagainst
inverse file length, 1/, so that the limiting form ag —o°
appears as the intercept at #0.

The L=10 to 100 simulations were obtained from 2500
to 16000 statistically independent files, depending on the
simulation times required. The error bars for these data . A
points are smaller than, or comparable to, the size of the 0,00 a2 557 S |
symbols. The equilibration time of these systems is propor-
tional toL3, so that the time scale of tHe=200 simulation
is approximately an order of magnitude longer than that fofFIG. 4. Concentratio_n profiles during self—diffu_sion in brf 60 s_ing_le—file
the L =100 simulations. As a result, a relatively small num- system, from simulatiofisymbolg and the diffusion equatiotsolid lines.
ber (100 of statistically independent files were averaged for
L =200, resulting in the relatively large error bar in Fig. 3.

Figure 3 shows that our single-file theory, E@3), times separated by 30 0a0The symbols represent average
quantitatively predicts the apparent single-file diffusivitiesKMC simulation data at the specified times, while the lines
calculated by KMC. Figure 3 also shows that the theory ofindicate the FDF solution using the diffusivity predicted by
Hahn and Keger'® over-estimates the diffusivity in finite  Eq. (23). The initial concentration spike develops into a
systems, because it neglects sorption limitations in the transsaussian peak that spreads with time according to Fick’s
port of vacancies. From E¢18), we see that the ratieL/D,  second law. The excellent fit between theory and simulation
determines whether vacancy transport is limited by sorptionn Fig. 4 indicates that the spreading Bfparticles is gov-
or diffusion. For the simulations shown in Fig. 3L/D,  erned by Fick’s second law on these time scales, with the
ranges from 0.9 fot. =10 to 18 forL=200. WhenvL/Dy diffusivity predicted by Eq(23). Hence, except for the fact
~1, the system is neither sorption-limited nor diffusion- that the diffusivity in Eq.(23) depends on file length, self-
limited, and Eq(23) should be used to predict the compound diffusion in single-file systems is Fickian in the sense that

diffusivity. However, whervL/D> 1, vacancy transport be- Fick’s first and second laws are obeyed for a file of given
comes diffusion-limited, the assumption of local thermody-length.

0.06

0.04

Concentration 6,

0.02

File position x

namic equilibrium becomes valid at the edges, and (E4). It is well known™?°that the MSD of particles in single-

becomes a useful approximation. file systems of infinite extent evolves #¢. The excellent
agreement in Fig. 4 between simulation and Fick’s laws sug-

B. Transient simulations gests, however, that the MSD in our finite single-file systems

While the agreement between E@3) and the steady- M&Y evol\_/eli_nearly With time at long tim_es, cqnsistenfc with
state simulations shown in Fig. 3 is impressive, the questiofomal Fickian diffusion. In order to investigate this, we
now arises as to whether our compound diffusion theoryn@ve calculated the time dependence of the MSD for all
Egs.(6)—(8) and(23), can reproducéransientdiffusion phe- simulation times, as ;hown |n_F|g. 5. Figure _5 ;how; that
nomena. To investigate this, we simulated transient TCPEXCept for very short timegsee inset the MSD s linear in
tracer exchange as occurs in TZLC experiments, and MSDs
of tagged particles as functions of time. All of these systems
showed good agreement with the FDF at sufficiently long 100 52 ' - - ' ]
times. For brevity, we discuss only the MSD calculations
below.

An L=260 single-file system was initially filled with par-
ticles up to an average occupancy &f=0.9 throughout.
Particles in column 30 were labeled Bparticles, while the
remainder were labeled &sparticles. Att=0, both edges of
the system were exposed to a phaséAgfarticles with an
insertion rate that maintained the equilibrivxoccupancy at
0,=0.9. The external phases are assumed to be well stirred
and of infinite extent, so that whaBrparticles leave the file, w0l ]
they cannot return. With these initial and boundary condi- / . . . .
tions, the diffusion solution for thB-particles in the zeolite 0 20000 40000 60000 80000 100000
is entirely within the counterdiffusion eigenmode. As such, Time (units of 7)

the matrix diffusion equation, qu)’ can be replaced by a FIG. 5. Mean-square displacementsBfparticles in anL=60 single-file

scalar FDF given by Eq$§)—(8), with Dg given bY Eq.(23). system, from simulatiotsolid line) and linear fit at long timeédashed ling
Figure 4 show®-particle concentration profiles at three Inset is enlargement at short times.
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T Compound diffusion. (R3(t))=2Ft"?, (26)
L=10000 (projected™ " 3 . . . . . 0.16

‘ whereF is the single-file mobility given by®

1000 ¢ ) E

rd

10000

A
&
Y K
S ; S 1-6 D
= d Compound diffusion S E= T nd 2
% 100 - <R2>=2Dst\ i,»"' J 0T p . ( 7)
§_ 10F y 3 The crossover time between single-file diffusion and
B 1 ] compound diffusion is given by the intersection of the
o SN ) dashed and dotted lines in Fig. 6, which can be obtained by
S ot 7 Single-file diffusion 1 equating Eqs(25) and (26). For long files, we can use Eq.
g E I, <RP>=2F1"? . . . .
N 3 (14) for the self-diffusivity, giving the following crossover
2 E /™ Mean field diffusion time:
0.001 & <R2>=2DU(1-97.)t - (L _ 1)2
102107 10° 107 102 10° 10° 10° 10° 107 10° 10° 10'° te=—p (28)
0

Time (units of 7)

If we replace [ —1) with L, this expression is the same as
FIG. 6. Log-log plot of mean-square displacement8qgparticles in anL that obtained by Hahn and"l@erm and is proportional to
=60 single-file system, from simulatiofsolid line), mean-field diffusion th haracteristic time for v 'n diffusion thr h th
theory giving slope of Xleft-most dotted ling single-file diffusion theory e Cmgl acteristic e or vacancy usio OUQ e
giving slope of% (dashed ling and compound diffusion theory giving slope §yste - For Short?r f'l?sj W_here vacancy transport is also
of 1 (middle and right-most dotted lings influenced by sorption limitations, Eq&3) and(26) should

be used to determing . t. defines what we mean by “long

times” in the title and throughout this article, indicating

time. The dashed line is a least-squares linear fit to the datyhen diffusion in single-file systems becomes Fickian. For
betweent=230000- and t=60000r, consistent with Ein- large systems, where E(.4) is valid, the MSD at the cross-

stein’s equation: over time is given by:
2 _ 2(1-46
(R¥(1))=2Dgt, (25) (Rt = 2| = T)L_ 29

where(R?(t)) is the MSD for a one-dimensional system.
The fact that the MSD is linear for long times in Fig. 5 is The root MSD at the crossover timB,= (R?(t.))*L?
further evidence that the system studied here diffuses in acspecifies the average distance when diffusion becomes Fick-
cordance with Einstein’s and Fick’s laws. As can be seen inan.
the inset to Fig. 5, the increase in the mean-square displace- We can also calculate the crossover time from mean-
ment is more rapid at short times, but approaches the linedield diffusion to single-file diffusion, which is given bty
regime at longer times. During the time shown in Fig. 5,=1/wDy63. For our system this quantity is of order unity,
essentially none of the tagged particles has left the(fife  indicting that the crossover between mean-field and single-
Fig. 4). Once several particles leave the ensemble of filesfile diffusion occurs at.=7, which is the average time it
Einstein’s equation becomes less useful in describing théakes a particle to attempt a jump within the lattice. These
system. However, the FDF of the diffusion problem remaingwo crossover times separate the MSD into three time re-
valid at all times, and can be used in a straightforward mangimes, determined by the extent of correlations in the motion
ner to determine the net fluxes throughout the file and at thef particles. For short times, motion is uncorrelated and is
file edges. given by the mean-field diffusivity. At intermediate times,
In order to examine the short-time behavior in more de-correlations in the particle motion spread out as if the file
tail, we have replotted the MSD of Fig. 5 as the solid line onwere of infinite extent. In this regime, Einstein’s equation
the log-log plot in Fig. 6. The dotted lines have slope equamust be replaced with E¢26) because the MSD is propor-
to 1 on the log-log plot, indicating that the MSD is propor- tional to t¥2. However, once the extent of correlations is
tional tot, whereas the dashed line has a slopg,dhdicat- comparable to the file length, a global compound diffusion
ing that the MSD is proportional tt"2. The short-time be- mechanism dominates, and the MSD is once again governed
havior is consistent with mean-field theory, where the dottedy Einstein’s equation, with a diffusivity that is greatly di-
line is given by Einstein’s equation witBs=Dy(1— 7). minished by correlations according to Eg3).
This is because at very short times<(r), the tagged par- The long-range correlations in compound diffusion arise
ticles have made at most one jump attempt, so that the dilbecause moving all the particles by only one lattice spacing
fusivity is determined by the fraction of initial jump attempts requires a vacancy to traverse the entire file length. In this
that are successful, which is given by the mean-field factoprocess, a particle is adsorbed at one edge, and a particle
(1—67). At long times, the MSD in Fig. @middle dotted desorbs at the other edge. Hence, the motion of any particle
line) is again given by Einstein’s equation wilhg given by  is influenced by the file edges, forcing the boundary condi-
Eqg. (23), giving transport that is dominated by compoundtions to influence the diffusivity oB-particleslong before
diffusion. At intermediate times, transport is achieved by athey reach the file edges.
single-file mode that operates as if the file were of infinite  Figure 6 also includes a line for a zeolite of the size
extent, with an MSD given by: typically used in diffusion experiments, i.&.=10 000, cor-
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responding to a ZSM-5 crystallite of about Ln in the file s five orders of magnitude greater than the compound diffu-
direction. The crossover from single-file to compound diffu- sivity. To achieve this differential between the co- and coun-
sion occurs at a time that is well approximated by E28).  terdiffusivities, events contrary to single-filing, such as par-
Thus, as the file length increases, the observation window fdicle jumps between files or particle exchanges within a file,
single-file diffusion also increases. In the next section, wemust be rare on a time scale comparable with the crossover
discuss the experimental implications of these findings.  time between single-file diffusion and compound diffusion.
If such events are frequent on this time scale, then the coun-
V. DISCUSSION terdiffusivity will become “normal” in the sense that the
diffusivity will become independent of file length for suffi-

In this article we make two different predictions about ", 10
ciently large crystal$:

single-file transport. The first is embodied in E&3), that
the counterdiffusivity scales asll1for sufficiently large sys-
tems. Second, the MSD makes a transition from being pro-

portional tot'2, to being proportional td, in the time it

takes a vacancy to traverse a zeolite particle. This crossovefl. CONCLUDING REMARKS

time, t., determines the beginning of the long-time regime

when diffusion in single-file systems is Fickian, and hence = We have presented a theory for self-diffusion in single-
determines the maximum time regime when single-file diffu-file zeolites of finite extent, which has been validated by
sion can be observed in finite systems. extensive open system kinetic Monte Ca(kMC) simula-

It is interesting to consider whether PFG NMR measuretions. We have focused on modeling zeolite host—guest sys-
ments of the MSD in single-file systems can detect the crosgems exhibiting Langmuir isotherms. Our theory is based on
over from single-file to compound diffusion. This should be a compoundtwo-stagé diffusion mechanism, wherein a va-
possible for files that are short enough to bring the crossoverancy must traverse the entire file length to produce particle
time into the experimental observation window, which is ca.displacements of one lattice spacing. In the first stage, va-
1-100 m& Performing PFG NMR measurements in the cancy transport through the lattice is governed by Fick’s first
compound diffusion regime may be complicated by interfer-law with constant diffusivityD,. In the second stage, par-
ences from zeolite particle boundaries, and from spin-latticeicle transport within the counterdiffusion mode is also gov-
relaxation. erned by Fick’s first law, with a diffusivity that is much less

Although the duration of single-file diffusion increases thanD,. Through correlations in the movement of all par-
with file length, the relative importance of single-file motion ticles in the compound diffusion mode, a particle jump of
decreases with file length. This becomes clear by analyzingne lattice spacing feels the edges of the file, so that bound-
the fraction of time that particles spend single-file diffusingary resistances can modify the counterdiffusivity if vacancy
while adsorbed in a zeolite crystallite. This fraction is giventransport is sorption-limited.
by t./Tnra, Wheret. is the crossover time and,, is the The theory, which was derived from an analysis of
intracrystalline residence tinfewhich scales ad.?/Dg. steady-state tracer counter-permeat(@tP), is shown to
Sincet.xL? while Dgx1/L for long files, we see that the apply to a more general class of systems, including transient
fraction of time in single-file diffusion mode scales a& 1/ counterdiffusion problems at long times. Examples explored
for long files. Ironically, while single-file diffusion is more by KMC simulations include mean-square displacements
easily measured in longer files, compound diffusion become&MSDs) of tagged particles as measured by PFG-NMR ex-
the dominant transport process in larger zeolite particles. periments, and tracer exchange as occurs in tracer zero-

The most direct way of testing the theoretical predictionslength column(TZLC) experiments. In general, we find that
for the compound diffusivity as given by E@®J), is to mea-  self-diffusion in finite, single-file systems is completely de-
sure the long-time counter-diffusivity of guest molecules inscribed by Fick's laws at times that are well below intra-
zeolite single crystals of varying file lengths, using macro-crystalline residence times, with diffusivities that depend
scopic techniques such as TZLC or TCP, or using a techupon file length.
nique that measures the MSD such as PFG NMR. The results In order to test our single-file diffusion theory, we have
of Hahn and Keger® as well as ours, predict that the diffu- simulated diffusion over eight orders of magnitude in time,
sivity will become inversely proportional to thickness for to investigate the short-, medium-, and long-time behavior in
large systems. This experiment is challenging because it resingle-file systems of finite extent. At short times, the MSD
quires defect-free, single crystals of various sizes. Anothelincreases linearly with time, according to Einstein's equa-
more practical method would be to compare the codiffusivitytion, with a slope given by the mean-field self-diffusivity. At
and counterdiffusivity for a given host—guest system inintermediate times, the MSD is proportional to the square-
defect-free single cryst@ of one size. The codiffusivity root of time, with a slope determined by the single-file mo-
could be measured by uptake or ZLC, while the counterdif-bility. At longer times, the MSD is once again proportional
fusivity could be measured by TZLC or PFG NMR. Our to time according to Einstein’s equation, with a greatly re-
theory predicts that the codiffusivity will be many orders of duced diffusivity predicted by our compound diffusion
magnitude larger than the counterdiffusivity. For example, intheory. For long files, where vacancy transport is diffusion-
the Langmuirian single-file zeolite considered here, assumlimited, this diffusivity becomes inversely proportional to
ing #r=0.9 and L=10000, corresponding to a 1@m file length, in agreement with the previously published
ZSM-5 crystallite, the single-component transport diffusivity theory of Hahn and Kiger® This dependence on file length
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