Benchmarking
the

ith the reduction in budgets and the

complexity involved in moving to new

technology, more customers are looking to

running benchmarks or proof of concepts
(POCs) prior to integrating new hardware into the data
center. Additionally, these often involve comparing x86
and POWER architectures to determine the best place to
put applications. However, performing a benchmark/
POC is not as simple as it sounds and there are many
things that can go wrong.

By Jaqui Lynch



Common Mistakes

The most common mistake I see is the
request to do a benchmark or POC with no
real understanding as to what is meant by
that. This ends up being a request with no
statement of work (SOW) and no properly
defined scope. Without a definition of scope,
benchmarks tend to drag on for some time
that is very expensive in both compute and
personnel time.

One of the most important things to define
is what constitutes success. What is the target
or point of this benchmark or POC? Ifitis a
competitive situation, then what determines
which platform wins?

Additionally, proper planning is vital to the
success of a benchmark or POC. This involves
determining the hardware and software,
personnel time, standardized output reporting
and how comparisons will be validly made
between platforms. Some of the benchmarks
require compiling, so a compiler may be needed
along with the skills to work with makefiles.
Planning also involves correctly choosing
benchmarks that are valid on all platforms. As
an example, a single-core benchmark is not
useful on an environment such as POWER. We
will discuss this later but it is important to
know what kind of benchmark or POC is to be
performed and what the end goal is.

What Is a Benchmark and Why
Bother?

A benchmark can be many things. It can be
a sizing test or study, a POC, a functionality
test, a test of new or current technologies or
competitive comparisons. True benchmarking
is where the workload is run on the actual
platform to be tested. There is also a form
of benchmarking called “simulated
benchmarking” where tests for a given
platform are run on a different platform, as
the necessary platform is not available. The
discussion below relates to true benchmarking.

There are many reasons people choose to
run one of the above types of benchmarks.
Sizing studies are not always correct for a

Enterprise Tech Journal e

number of reasons but primarily because they
depend on data input with respect to how the
application may be used. Any deviations from
that can result in an undersized study.
Additionally, they rarely take into account the
needs for virtualization and tend to round
everything up or down. For that reason, many
customers like to run a benchmark so they
can determine if the server is correctly sized
for the proposed workload.

Additionally, POCs are run to determine if
the application, operating systems and/or
hardware behave well on the new technology,
and if it performs the way that is expected.
These can also be pure functionality tests that
are looking at whether the application has all
the functionality needed and promised.

More recently there has been an upsurge in
competitive bake-offs—sometimes comparing
server technologies or different server vendors
with each other, and sometimes comparing
storage systems that are attached to a server.
As an example, benchmarks comparing
spinning disks, solid state disks (SSDs) and
flash systems have become very popular as
customers try to determine whether the
performance improvements justify the price
increases. And last, there are benchmarks
comparing different operating systems such as
AIX, Linux on POWER and Linux on x86.

Benchmark Options

There are a number of benchmarks out
there that are useful to run, and many that are
not. When working with POWER systems, it
is important to note that POWER servers are
designed for throughput, not individual core
performance. What this means is that you
don’t really see the maximum performance
until you push the box with multiple things
running at the same time. No one runs their
server with only one thing running at a time
so it makes no sense to run a single core test
on a 16 core server. It is much better to run 16
concurrent entities, or even better, to run 64
so you can test the benefits of simultaneous
multithreading (SMT). That also allows you to

March/April 2015 e 63



compare technologies and how they handle
the server getting extremely busy.

There are a number of good benchmarks
out there for testing performance. For the
network, you can look at httperf, iperf or
netperf. FTP is not a good test for
performance. For general performance, there
is the nstress suite for AIX from IBM. This
allows you to test memory, CPU and/or disk
bandwidth. For Oracle, there is Oracle
SwingBench. Tests like Dhrystones are not
really valid as they measure integer
performance that is designed to test individual
core speed, so they don’t take advantage of
technologies like SMT. Additionally, they have
some unusual code in them that is not
representative of commercial workloads; and
Dhrystones also does not test instruction fetch
very well. Finally, there is also the option that
your application vendor may have test code
you can run—as an example, SAS provides
iotest.sh for UNIX to test I/O bandwidth for
SAS applications.

Summary of Benchmarks That May
Be Useful

httpperf is used to generate web workloads,
and to measure generic web server
performance. The code for this is old so I
would look more to iperf.

iperf is used to test client/server networks
and allows you to test maximum TCP and
UDP bandwidth. It has options for tuning
parameters and characteristics and reports on
bandwidth, delay jotter and datagram loss. It
also reports on retransmits, average CPU
utilization and many other statistics.

netperf is used to test unidirectional
throughput and end-to-end latency on the
network.

nstress is the one I find most useful. It
provides options to hammer CPU, disk and
memory as well as testing shared memory,
logging and file creation and deletion. It is
very easy to use and very flexible. Binaries are
provided for AIX, Linux on POWER and
Linux on x86 that make it valuable for doing

64 e

Enterprise Tech Journal

comparisons across technologies and/or
operating systems.

Oracle SwingBench is used to stress test
Oracle database. It has two kinds of tests—
order entry and calling circle. Order entry is
the most commonly used and includes logins
and lets you test with various numbers of
customers and orders.

Specjvm2008 is a free Java benchmark that
is used to measure the performance of the
Java run-time environment (RTE). It focuses
on core Java functionality and stresses
memory and CPU with little, to no, network
and I/O activity.

There are a number of other options out
there, from using multiple dd or cpio
commands to purchasing benchmark suites
such as TPC-H or TPC-E or any of the
various Spec benchmarks.

Moving Forward

Prior to agreeing to a benchmark, there are
several steps that will increase the potential of
a successful benchmark. These include:

+ Document the type of benchmark and all
resources required

» Determine the purpose

» Determine what constitutes success and
failure

« Document assumptions and expectations

» Ensure there is a clear definition of the
scope

» Have a clear list of all tests to be run and
how output will be reported

» Ensure the chosen benchmark is a valid test
for the hardware it is being run on

 Ensure there is a valid estimate for
personnel time, especially of resources such
as database administrators (DBAs) are
needed

o Check that there are sufficient spare
licenses if the software being run requires
licenses

+ Make sure you understand the costs as a
benchmark can take two weeks to setup,
four to eight weeks to run and another

o March/April 2015



not individual core performance.

week to teardown. Additionally, time needs
to be allocated to analysis and reporting of
the data.

Reporting

A valid benchmark report needs to
include several things. First, is the executive
summary that should be at the front. Then
there should be a list of what the benchmark
was, why it was run and what the
assumptions and expectations were. A
complete list of hardware, software and setup
information should be included as an
appendix. For each test run, a list of what
changed between tests should be included.
It helps to put tables of data at the end in an
appendix and it is also critical to choose
graphs that make sense. For some things,
tables and area graphs are useful, for others
radar or spider graphs are useful. Ensure that
colors are consistent between graphs so they
can be compared quickly.

Summary

While benchmarks have become more
common, many issues arise out of a lack of
planning. Add to this a lack of understanding
of what a benchmark involves and the scope-
creep that ensues because of that and you can
see how important it is to properly plan for a
successful benchmark. Benchmarks are very
useful tools if they are used properly and
planned for. They can provide incredibly

Enterprise Tech Journal e

valuable information and help you determine
the correct way to move your technology
forward. All you have to do is take some
control upfront to ensure success.

References

« httpperf
http://code.google.com/p/httperf/

o iperf
https://github.com/esnet/iperf

+ netperf
http://www.netperf.org/netperf/
NetperfPage.html

« nstress

https://www.ibm.com/developerworks/
community/wikis/home?lang=en#!/wiki/
Power%20Systems/page/nstress

» Specjvm2008
http://www.spec.org/jvm2008/

» Spec Benchmarks in General
http://www.spec.org/benchmarks.html

+ TPC Benchmarks
http://www.tpc.org/ ETJ

Jaqui Lynch has more than 36 years of experience
working with a variety of projects and operating
systems across multiple vendor platforms, including
mainframes, UNIX systems, midrange systems and
personal workstations. She currently works at Forsythe
Technologies as a solutions architect, focusing on
POWER Systems with AlX and Linux. Additionally, she
regularly presents at IBM and other conferences around
the world.

Email: jaqui@circle4.com

March/April 2015 o 65



