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Chapter 12: COVID-19 and epidemiology (web edition) 
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Introduction: going viral …  
In this chapter, we’ll investigate how the finite difference (FD) approach we developed in 
CHAPTER 3 can be used to model the spread of the novel coronavirus that’s responsible for the 
COVID-19 pandemic. Imagine…  
 

You’ve been talking with Esperanza (Espe – a friend studying public health policy and 
epidemiology) about the marble game and she’s intrigued. She thinks that you should 
be able to apply the finite difference (FD) approach that we’ve learned in Chapters 
3-11 to gain insights into the COVID-19 pandemic. She’s heard people on TV say 
“Without a vaccine everyone who’s not immune will eventually get COVID-19. Social 
distancing will flatten the curve, but ultimately the same number of people will be 
infected in the end – no matter what we do.” She says epidemiological models show 
that’s simply not true! Social distancing not only lowers the peak in the infection rate, 
but it can also reduce the total number infected. It can even prevent the outbreak 
from occurring at all!  

 
In SECTION 12.1 we’ll take up Espe’s challenge and investigate the simplest possible model of a 
pandemic. It’s an unrealistic UG model that predicts “unlimited growth” in the number of 
infectious people, but it’s an important starting point for understanding the pandemic, particularly 
in the early stages, which we’ll call epoch  ①. By comparing the UG model with real COVID-
19 data for the United States at the beginning of March 2020, we’ll discover that it successfully 
models the infection rate data for the first “19 days” of the pandemic in the US and almost until 
the end of March 2020. Next, we’ll investigate a model that limits the growth of the COVID-19 
outbreak by accounting for the finite size of the susceptible population. We’ll investigate this 
finite population (FP) model in SECTION 12.2 and discover the “logistic growth” that it predicts 
and how social distancing and mask wearing can indeed “flatten the curve” just like the quote 
Espe mentioned above.  
 
In SECTION 12.3 we’ll add “recovery” to the finite population model, so that infected individuals 
eventually recover. As we’ll discover, adding this simple idea to the epidemiological model makes 
the difference that Espe was talking about. We’ll investigate the resulting susceptible-infected-
recovered model (SIR model) that was first developed by Kermack and McKendrick way back 
in 1927. In that model, susceptible individuals can be infected by another infected individual and 
then recover – that’s it! Even though it sounds straight forward, the SIR model’s mathematical 
predictions are surprisingly complex. It’s the origin of the epidemiological parameter ℛ0 
(pronounced “R naught”) that you may have read about in the news or heard about in the 2011 
movie Contagion. It also predicts the concept of “herd immunity” that explains why not all 
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susceptible people need be infected if social distancing is maintained. For ℛ0 > 1, the SIR model 
always predicts that the infection rate curve, 𝑅𝑅𝑖𝑖(𝑡𝑡) will have a characteristic peaked shape that I 
call the “exponential dragon.”  
 
In SECTIONS 12.4 – 12.10 of this WEB EDITION of CHAPTER 12 we’ll apply our SIR model to 
real COVID-19 data in the United States in the period from March 2020 through August 2021. 
This analysis was done as the data came in day-by-day and is a record of my attempts to find 
simple models of the COVID-19 pandemic in the United States. Unfortunately, the analysis grew 
complex and lengthy, but it did result in a peer-reviewed journal article [Nelson 2021]. For 
completeness, that full investigation is included here in this WEB EDITION of CHAPTER 12. 
 
In SECTION 12.4, we’ll apply our SIR model to real COVID-19 data in the United States in the 
first two weeks of April 2020 and discover that just like meteorological modeling, epidemiological 
modeling can suffer from the butterfly effect (sensitive dependence on initial conditions), which 
explains why predictions made during the initial exponential growth period were all wrong. In 
SECTION 12.5 we’ll use data from the first two weeks of April 2020 to predict the infection rate 
in the US for the next month and beyond to discover that the SIR model does an excellent job of 
predicting the infection rate until at least Memorial Day (May 25), which we’ll call epoch ②. 
We’ll also talk about how implementing social distancing just 7 days earlier could have saved 
over 82,000 lives and 1.3 million people from COVID-19 infections by Memorial Day 2020. It’s 
an important public health policy lesson. 
 
In SECTION 12.6 we’ll investigate modeling the transition from epoch ① to epoch ② by 
changing the "infection rate coefficient" using a “Gaussian transition function” and assume that 
all the other SIR model parameters remain unchanged. Once we’ve successfully done that, we’ll 
change the infection rate coefficient for the US as a whole to that observed in New York City after 
they implemented social distancing and mask wearing etc. We’ll then discover how many 
infections and lives could have been saved – if the rest of the United States had followed NYC’s 
lead.  
 
In SECTION 12.7 we’ll model the effects of lifting social distancing guidelines prematurely. As 
we’ll discover, this period of relaxed social distancing (epoch ③) instigated what became known 
as the summer surge. The resulting growth in infection was only moderated when the US returned 
to stricter social distancing in epoch ④.  
 
As we’ll discover in SECTION 12.8, the next epoch ⑤ of the pandemic was caused by a return to 
relaxed social distancing for an extended period. I’ll call epoch ⑤ the fall dragon because it was 
the first time that the infection rate exhibited a peak corresponding to the exponential dragon of 
the SIR model. The fall dragon was the first time in the pandemic that the model population size 
became a constraining parameter in the fitted model.  
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During epoch ⑤, COVID-19 vaccines were approved by the FDA for use in the United States 
and in SECTION 12.9 we’ll develop and validate a simple modification of the SIR model that’s 
able to include published vaccination data. As we’ll discover, this SIRV model is able to 
successfully model the published infection rate data from the beginning of the pandemic up to 
May 31, 2021 by adding an epoch ⑥ corresponding to a smaller exponential dragon caused by a 
substantial further reduction in social distancing. 
 
Epoch ⑦ of the pandemic began after May 31, 2021 and resulted in what became known as the 
“delta peak,” because it was caused primarily by the newly dominant delta variant of COVID-
19. As we’ll discover in SECTION 12.10, the beginning of the delta peak could be successfully 
modeled by an exponential dragon predicted by the SIRV model up until about August 12, 2021, 
albeit with an extremely high infection rate constant [Nelson 2021]. While the fitted model 
successfully predicted that a peak would occur soon after August 12, 2021, the behavior of the 
model during and after the peak did not match the published data at all – most likely because the 
delta variant did not behave like the previous variants of COVID-19 (mostly alpha). The most 
likely explanation is that the assumption of permanent immunity was no longer valid during epoch 
⑦. 
 
In APPENDIX 12.A, we compare our SIR model with one that was used in mid-April 2020 to help 
hospitals and public health officials with hospital capacity planning in the Penn Medical system. 

Modeling the pandemic 
 

 
Fig.12.01 Image 23311 from the CDC [2020] – Caption: This illustration, created at the Centers for Disease 
Control and Prevention (CDC), reveals ultrastructural morphology exhibited by coronaviruses. Note the 
spikes that adorn the outer surface of the virus, which impart the look of a corona surrounding the virion, 
when viewed electron microscopically. A novel coronavirus, named Severe Acute Respiratory Syndrome 
coronavirus 2 (SARS-CoV-2), was identified as the cause of an outbreak of respiratory illness first detected 
in Wuhan, China in 2019. The illness caused by this virus has been named coronavirus disease 2019 (COVID-
19). 

 
Okay, so you’ve seen Fig.12.01 before, heard a lot about the COVID-19 pandemic, and how 
social distancing and mask wearing can flatten the curve to slow down the spread of the disease. 
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You’ve probably even seen a graphic like Fig.12.02 illustrating how social distancing slows the 
spread of infection to keep the peak number of cases below the capacity of the medical system.  
 

 
Fig.12.02 Illustration of how social distancing slows spread of infection to keep peak number of cases below 
the capacity of the medical system (dateline March 10, 2020). [Credit: Nancy R. Gough, BioSerendipity, 
LLC; This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.]  
[Gough 2020] 

 
Fig.12.02 is a good journalistic graphic illustrating the effect, but when I first saw it (and others 
like it), I was struck by the rather simple shape of the curves – they both looked like bell-normal 
or Gaussian curves (CHAPTERS 8 and 10) to me. Also, if you’ve been paying attention to these 
materials, you should have noticed that the graphic is not a properly formatted scientific graph for 
real data. The main reason is that the axes don’t have numbers or units. That’s okay if you’re just 
trying to get across the general idea of social distancing – but as a scientific modeler you should 
want more … 
 
During our extended spring break in 2020, I thought that now (March 13, 2020) would be a great 
time to investigate whether the finite difference methods that we’ve been developing using this 
BIOPHYSICS AND PHYSIOLOGICAL MODELING (BPM) book can be applied to epidemiology and 
the idea that social distancing [Gough 2020] will help slow the spread of the disease. Let’s see 
what we can discover… 

12.1 The outbreak – exponential growth 

Initial infections – exponential growth 
We can modify the marble game model from BPM CHAPTERS 1-3 (available online for free at 
Circle4.com) to provide a starting point for modeling the spread of COVID-19. The simplest 
model that we’ll consider is only realistic during the initial phase of infection and predicts the 
worst possible case for the epidemic. Fig.12.03 shows a finite difference (FD) diagram 
(CHAPTER 3) of this worst-case model, which we’ll call the unlimited growth (UG) model.  

http://circle4.com/biophysics
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Fig.12.03 FD diagram of a two-box epidemiological model. The two boxes in this unlimited growth (UG) 
model represent the two parts of the model population. Box 𝑠𝑠 represents people that are susceptible to the 
disease. Box 𝑖𝑖 represents people that are infectious.  

 
The two boxes in Fig.12.03 represent all the possible states of the model population. The criterion 
for being in the model population is simply that an individual can be infected – and that their 
infection is reported – if they’re exposed. 
Note: Unlike most of the FD diagrams we’ve talked about in this BPM BOOK, the two boxes in 
Fig.12.03 don’t represent physical locations – they’re conceptual boxes that we’re using to 
characterize subsets of the model population. Our model assumes that all people in the model 
population (both susceptible and infectious) interact with each other at a constant rate during the 
time period under consideration. 
 
The UG model assumes that the infection rate 𝑅𝑅𝑖𝑖 is given by 
 
 𝑅𝑅𝑖𝑖 = 𝑘𝑘𝑖𝑖𝑁𝑁𝑖𝑖 (12.1) 
 
where 𝑁𝑁𝑖𝑖  [=] 1 is the number of infectious people, the number infectious, and 𝑘𝑘𝑖𝑖  [=] 1/d is the 
infection rate constant with units of “per day per infectious person.” The idea behind the UG 
model and equation (12.1) is that an infectious person wanders randomly throughout the model 
population, just like a molecule in aqueous solution, infecting others with a rate characterized by 
an infection rate constant 𝑘𝑘𝑖𝑖. An infection rate constant of 𝑘𝑘𝑖𝑖 = 0.25 d−1 means that an infectious 
person infects 0.25 susceptible people per day (or one susceptible person every 4 days), on 
average, causing them to ‘‘jump’’ from box 𝑠𝑠 → 𝑖𝑖 when they become infectious – usually some 
days after contact with the infectious person.  
 
The observed infection rate 𝑅𝑅𝑖𝑖 per day is a number that’s published by country at the European 
Centre for Disease Prevention and Control as new confirmed cases (per day) [ECDC 2020]. 
Those data don’t match up with the model exactly, but they’re the best data that I could find as of 
March 16, 2020. What we’d really like to know is the total number of infectious people – 
regardless of whether they’re showing any symptoms or whether they’ve been officially 
diagnosed, but those data aren’t available.  

About what you discovered: a note on notation 
I chose to use the symbol 𝑁𝑁𝑖𝑖 for the number infectious to make the notation in this CHAPTER 12 
match what we’ve done in the rest of this BPM BOOK. Epidemiologists prefer using the single 
uppercase letter 𝐼𝐼 instead of 𝑁𝑁𝑖𝑖. They also prefer to use Greek letters for the rate constants so that 

infectious  susceptible 

 𝑘𝑘𝑖𝑖𝑁𝑁𝑖𝑖 𝒔𝒔 𝒊𝒊 
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equation (12.1) would be written as 𝑅𝑅𝑖𝑖 = 𝛽𝛽𝐼𝐼. We’ll stick with using the chemistry 𝑘𝑘 with a 
descriptive subscript for rate constants and 𝑁𝑁 with a descriptive subscript for numbers in the boxes 
of the model. 𝑁𝑁 without a subscript will be the total number in the model population. Hence, for 
the UG model we can write 𝑁𝑁 = 𝑁𝑁𝑠𝑠 + 𝑁𝑁𝑖𝑖 which matches equation (1.1) of the marble game, i.e., 
𝑁𝑁 = 𝑁𝑁1 + 𝑁𝑁2. That way, the notation in this CHAPTER 12 will match all the myriad other models 
that we’ve developed based on the marble game.  
 
Let’s see what the worst-case FD model of Fig.12.03 predicts … 

Unlimited growth 
The FD model of Fig.12.03 is just about as simple as it can be, but it has one major difference 
from all the other models that we’ve talked about in this BPM BOOK. That difference is that the 
infection rate 𝑅𝑅𝑖𝑖 = 𝑘𝑘𝑖𝑖𝑁𝑁𝑖𝑖 (12.1) depends on the number infectious 𝑁𝑁𝑖𝑖 – rather than the number 
susceptible 𝑁𝑁𝑠𝑠, i.e., the FD equation for the change δ𝑁𝑁𝑖𝑖 in the number infectious is 
 
 δ𝑁𝑁𝑖𝑖 = +𝑘𝑘𝑖𝑖𝑁𝑁𝑖𝑖δ𝑡𝑡 (12.2) 
 
where the timestep δ𝑡𝑡 [=] d (has units of days). The plus sign + in equation (12.2) is not really 
necessary, but I included it for dramatic effect! Let me explain … Unlike drug elimination 
(CHAPTERS 2 and 4) – where the rate of decrease in the drug concentration depends on the amount 
already there – the rate of increase in the number infectious 𝑁𝑁𝑖𝑖 depends on the number that are 
already infectious. The change δ𝑁𝑁𝑖𝑖 is always positive, which makes the number infectious 𝑁𝑁𝑖𝑖 
always increase. The rate of infection δ𝑁𝑁𝑖𝑖/δ𝑡𝑡 is proportional to 𝑁𝑁𝑖𝑖 the number infectious so that 
the bigger 𝑁𝑁𝑖𝑖, the bigger the infection rate. In the UG model, there’s no limit to the increase, which 
is why we’re calling the FD model of Fig.12.03 the unlimited growth (UG) model.  
 
Data on the spread of COVID-19 is usually reported as the “new infection rate” or “new confirmed 
cases per day,” which corresponds to the infection rate 𝑅𝑅𝑖𝑖, hence it’s convenient for us to formulate 
our model using that metric. Hence, we can write equation (12.2) as 
 
 δ𝑁𝑁𝑖𝑖 = 𝑅𝑅𝑖𝑖δ𝑡𝑡 (12.3) 
 
where 𝑅𝑅𝑖𝑖 is given by equation (12.1). Combining this equation (12.3) with the corresponding FD 
update equation (3.31) gives us the following condensed FD instruction 
 
 𝑁𝑁𝑖𝑖new = 𝑁𝑁𝑖𝑖old + 𝑅𝑅𝑖𝑖new ∗ δ𝑡𝑡 (12.4) 
 
for predicting the new number infectious 𝑁𝑁𝑖𝑖new from the old number infectious 𝑁𝑁𝑖𝑖old after a 
timestep δ𝑡𝑡, by adding the change in the number infectious δ𝑁𝑁𝑖𝑖new = 𝑅𝑅𝑖𝑖new ∗ δ𝑡𝑡, where 𝑅𝑅𝑖𝑖new =
𝑘𝑘𝑖𝑖 ∗ 𝑁𝑁𝑖𝑖old from equation (12.1).  
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 Q.12.01  (a) Using equations (12.1) and (12.4) write out a complete FD algorithm, 
including unit checks, to calculate the infection rate 𝑅𝑅𝑖𝑖(𝑡𝑡) and number infectious 𝑁𝑁𝑖𝑖(𝑡𝑡) 
using a timestep of δ𝑡𝑡 = 1 d, an infection rate constant of 𝑘𝑘𝑖𝑖 = 0.3 d−1 (where d−1 is 
pronounced “per day”), and an initial number infectious of 𝑁𝑁𝑖𝑖(𝑡𝑡 = 0) = 𝑁𝑁0 = 10. 
(b) By hand, calculate steps 0, 1, and 2 of your finite difference algorithm and record your 
answer in the form of an FD output table. 
Hint: As usual, you should do parts (a) and (b) of this question together. It’s easier that 
way. 
Note: I go over the how to do these questions in the YouTube video 
https://youtu.be/gLao39Wcf3Y [Nelson 2020a] for this SECTION 12.1. 

About what you discovered: the infection rate constant 𝒌𝒌𝒊𝒊 
It’s important to note that the infection rate constant has a simple interpretation. The value of 𝑘𝑘𝑖𝑖 =
0.3 d−1 in Q.12.01 means that an infectious person infects 0.3 susceptible people per day (on 
average) while they are infectious in our UG model.  

 
 Q.12.02  (a) Open the preformatted spreadsheet BPM.Ch12_Unlimited_growth.xlsx and 
fill in the blank cells with your algorithm and check that you get exactly the same results 
that you calculated by hand in Q.12.01(b). The spreadsheet should automatically plot both 
the new infection rate 𝑅𝑅𝑖𝑖(𝑡𝑡) and the number infectious 𝑁𝑁𝑖𝑖(𝑡𝑡). As always, you then need to 
reduce the timestep δ𝑡𝑡 and add enough steps so that the curves reach day 𝑡𝑡 = 19 d. Record 
your graph for the number infectious 𝑁𝑁𝑖𝑖 as a function of time. 
Reminder: As usual, the timestep parameter δ𝑡𝑡 should be made small enough that it 
doesn’t affect the model. 
(b) Make a copy of each of the two graphs and change the vertical axis of each graph to a 
Logarithmic scale (CHAPTER 2). Record your semi-log graph for the new infection rate 
𝑅𝑅𝑖𝑖(𝑡𝑡). 
(c) Briefly describe what you can conclude from the shapes of the resulting semi-log 
graphs. 
 
 Q.12.03  CALCULUS QUESTION  (a) Using calculus, show that the analytical solution to FD 
equation (12.2) for 𝑁𝑁𝑖𝑖(𝑡𝑡) in the limit that δ𝑡𝑡 → 0 is: 

 
 𝑁𝑁𝑖𝑖 = 𝑁𝑁0𝑒𝑒𝑘𝑘𝑖𝑖𝑡𝑡 (12.5) 
 

where 𝑁𝑁0 is the initial number infectious 𝑁𝑁𝑖𝑖 at time 𝑡𝑡 = 0. Your answer should use a format 
similar to the “Calculus can be useful” AWYD in CHAPTER 3. 
(b) By taking the derivative of equation (12.5), show that the analytical solution for 𝑅𝑅𝑖𝑖(𝑡𝑡) 
is 

 𝑅𝑅𝑖𝑖 = 𝑘𝑘𝑖𝑖𝑁𝑁0𝑒𝑒𝑘𝑘𝑖𝑖𝑡𝑡 (12.6) 
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 Q.12.04  DISCUSSION QUESTION  By substituting equation (12.5) into equation (12.1), show 
that the analytical solution for 𝑅𝑅𝑖𝑖 as a function of time is equation (12.6). 
Hint: Okay, this is not a trick question. It really is that easy! 

About what you discovered: Proportional change once again 
In Q.12.02, Q.12.03 and Q.12.04 you showed that the initial unlimited growth model of the 
spread of an infection like COVID-19 is another example of proportional change. The only major 
mathematical difference between equations (12.5) and (12.6) and equations (3.17), (4.9), (4.21), 
(9.18) and (11.74), is that our unlimited growth model has a positive rather than a negative 
exponent, which means that it describes exponential growth instead of exponential decay. 
 
Your answer to Q.12.02(a) should look something like Fig.12.04. It shows the characteristic 
exponential growth that’s expected for an unlimited growth model. Fig.12.05 shows the same 
model data on a semi-log graph. The fact that it’s a straight line, indicates the exponential 
dependence of the number infectious 𝑁𝑁𝑖𝑖 on time 𝑡𝑡 (CHAPTER 2). 
 

 
Fig.12.04 Excel chart showing the exponential growth of the number infectious 𝑁𝑁𝑖𝑖 according to our  
unlimited growth model of COVID-19. 
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Fig.12.05 Excel semi-log chart showing the exponential growth of the number infectious 𝑁𝑁𝑖𝑖 according to  
our unlimited growth model of COVID-19. Note: This figure is not the same as your answer to Q.12.02(b). 

 
In Q.12.04 you confirmed that equation (12.5) is consistent with our model, by showing that our 
model’s generating equation (12.1) successfully predicts the mathematical form (12.6) predicted 
by equation (12.5) using calculus in Q.12.03. 
 
Note: It’s important to realize that time 𝑡𝑡 = 0 in the model is not the time of the first case of 
COVID-19, I chose an initial infectious number of 𝑁𝑁0 = 10 for reasons that should become clear 
when we compare the model with the published number of confirmed new cases per day for the 
US. 
Also note: Equation (12.1) is the reason that the graphs of both 𝑁𝑁𝑖𝑖(𝑡𝑡) and 𝑅𝑅𝑖𝑖(𝑡𝑡) show exponential 
growth. Equation (12.1) states that the rate of new infections 𝑅𝑅𝑖𝑖 is proportional to the number 
already infectious 𝑁𝑁𝑖𝑖 – another example of proportional change.  

Doubling time 
The doubling time 𝑡𝑡𝑑𝑑 is the time it takes for the number infectious 𝑁𝑁𝑖𝑖 to double. 
 

 Q.12.05  (a) By substituting 𝑁𝑁𝑖𝑖 = 2𝑁𝑁0 and 𝑡𝑡 = 𝑡𝑡𝑑𝑑 into equation (12.5), show that the 
doubling time is predicted to be  

 𝑡𝑡𝑑𝑑 =
ln 2
𝑘𝑘𝑖𝑖

 (12.7) 

 
(b) Using equation (12.7) calculate the doubling time for the unlimited growth model of 
COVID-19 spread in Q.12.01 with 𝑘𝑘𝑖𝑖 = 0.3 d−1. 
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About what you discovered: doubling time 
The doubling time that you calculated in Q.12.05(b) (𝑡𝑡𝑑𝑑 = 2.3 days) tells us how long it takes 
for the number of infectious people to double in the unlimited growth model of Fig.12.03. It’s 
analogous to the to the half-life 𝑡𝑡½ that we discussed at length in CHAPTER 2 and CHAPTER 4. 
Unfortunately, there’s a rather dramatic difference. After each half life, the number of drug 
molecules (or radioactive nuclei) decreases to half its previous value, whereas after each doubling 
time, the number infectious doubles. If you’ve never studied exponential growth before, you’ll 
probably be surprised by the explosive consequences of such a model. The doubling and repeated 
redoubling predict a pattern that’s always unsustainable! Let’s see what we can discover …  
 

 Q.12.06  DISCUSSION QUESTION  (a) Open your spreadsheet answer to Q.12.02, and save a 
fresh copy of it for this question – a good filename is BPM.Q.12.06(a).xlsx. Then extend 
the graph out from 19 days to 30 days. Record 𝑅𝑅𝑖𝑖 the number of new infections predicted 
for day 30 and the number infectious 𝑁𝑁𝑖𝑖.   
(b) Compare your spreadsheet predictions with the predictions of equations (12.6) and 
(12.5) for day 𝑡𝑡 = 30 d of the model. 
1st Hint: Your numbers won’t be exactly the same as each other, but if there’s a significant 
difference you’ll have to decrease the timestep δ𝑡𝑡 – you should have already done that 
when you answered Q.12.02(a) … Recall, as we discovered in CHAPTER 3, if the timestep 
δ𝑡𝑡 is too big, the FD model will not give accurate results. Because of its nature, FD equation 
(12.2) is one that requires a smaller-than-you-might-expect timestep – it’s another example 
of a stiff equation (CHAPTER 11).  
2nd Hint: As always, you should also use what you learned about making quantitative 
comparisons in the “talking numbers” AWYD in CHAPTER 2. You might find the 
preformatted spreadsheet BPM.Ch02_Talking_numbers.xlsx useful.  
(c) Extend the graph out from 30 days to 60 days. Record 𝑅𝑅𝑖𝑖 the number of new infections 
predicted for day 60 and the number infectious 𝑁𝑁𝑖𝑖. 
(d) Compare your spreadsheet predictions with the predictions of equations (12.6) and 
(12.5) for day 𝑡𝑡 = 30 d of the model. 
Don’t freak out: The huge number on day 60 is reliant on the assumption of unlimited 
growth and that no individual ever recovers from the disease and that there’s no social 
distancing or mask wearing and no quarantine of the exposed or isolation of the infectious. 
We’ll get to all of that soon … but it’s important to understand just how devastatingly 
explosive unrestricted exponential growth really is. 

About what you discovered: exponential growth has explosive consequences 
Another example of exponential growth is a nuclear explosive device. Induced nuclear fission 
of uranium 235 (235U) occurs when a 235U nucleus is hit by a neutron. The 235U nucleus randomly 
splits (fissions) into smaller parts, and on average releases about 2.5 more neutrons and a great 
deal of energy. If this occurs deep inside a mass of pure uranium 235, then each neutron is likely 
to collide with another 235U nucleus, which in turn will produce 2.5 more neutrons … a chain 
reaction then ensues. If we made an FD model of this process, we’d get a similar exponential 
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growth curve to Fig.12.04. However, the timescale would be much, much shorter. The exponential 
growth continues until the 235U mass blows apart from all the energy released (a nuclear fizzle) 
or all of the 235U nuclei are split apart releasing the maximum amount of energy – a nuclear 
explosion. You might be interested to know that the critical mass required to initiate this kind of 
unlimited fission is about 52 kg, which corresponds to a sphere of pure 235U about 17 cm in 
diameter. This doesn’t sound like very much – but thankfully separating the rare 235U nuclei from 
naturally occurring uranium (mostly 238U) is extremely difficult!  
 
Regular chemical explosives, used in mining etc., also rely on a rapid chain reaction that releases 
energy. The main difference is that nuclear reactions release about one million times more energy! 
Yet another example of exponential growth – that you may already have heard of – is bacterial 
growth in an infinite medium. If the medium is not infinite, then the bacterial growth is only 
exponential initially and it slows down when resources become scarce. We’ll be modeling this 
limitation in SECTION 12.2.  
 

 Q.12.07  DISCUSSION QUESTION  Add a Theory table (CHAPTER 2) to your spreadsheet from 
Q.12.02 to plot the analytical equation (12.5) out to 19 days. 
(a) Record a graph that clearly shows both the FD model and the analytical solution (12.5). 
(b) Briefly discuss what you can conclude about the equivalence of our FD model and the 
analytical solution (12.5) for exponential growth. 

Comparison with reported data … day-19 
Okay, so now that that we’ve investigated the properties of the unlimited growth model, let’s see 
how well it does in predicting the real COVID-19 data in the US. If you’re interested in other 
countries, the data are also available at Our World in Data the Our World in Data (EOWID) 
[OWID 2022c]bas new confirmed cases (per day). 
 

 Q.12.08  DISCUSSION QUESTION  Open the preformatted spreadsheet BPM.Ch12_USA_day-
19.xlsx. It contains data reported at the ECDC as new confirmed cases (per day) in the 
USA in the 19 days following Feb 26 2020. 
(a) Add an Exponential trendline to the graph and check the options for Display Equation 
on chart and Display R-squared value on chart. After making sure that the chart is 
formatted properly, record your graph. 
(b) Record the model parameters that you can obtain from the Excel trendline equation in 
the graph by comparing it with equation (12.6). 
Hint: You’ll need to determine 𝑘𝑘𝑖𝑖 first before you calculate 𝑁𝑁0. 
(c) Before you read the following AWYD, briefly discuss what you can conclude about the 
applicability of the unlimited growth model from the graph you just made. 

About what you discovered: … not so fast – don’t jump to conclusions! 
Your answer for Q.12.08(a) should look something like Fig.12.06. Most people looking at 
Fig.12.06 would (quite reasonably) have the optimistic view that the data for the last 5 days appear 
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to be below the predictions of the exponential model, but there’s a problem with that conclusion 
that you may have forgotten from CHAPTERS 4 and 6 – Excel doesn’t actually do a proper least-
squares fit when it does an “exponential trendline.” Let’s see what we can discover … 
 

 
Fig.12.06 Excel chart comparing the exponential growth model of equation (12.6) with reported data for  
the USA in the 19 days since February 26, 2020. The dotted line is an Excel “exponential trendline” fit. 
Data source ECDC [2020]. 

 
 

 Q.12.09  DISCUSSION QUESTION  Using what you learned in CHAPTER 6, fill in the three 
empty columns of the experimental data table labeled USA new infections starting 
2/27/2020 (ECDC) to do a proper least-squares fit to the USA data. The UG column should 
calculate the theoretical (expected) infection rate 𝑅𝑅𝑖𝑖 using equation (12.6). The residuals 𝑟𝑟 
should be calculated using equation (4.12), the 𝑟𝑟2 column should be calculated by squaring 
the residuals and the quality of fit 𝑄𝑄 should be calculated using equation (6.11). 
Note: I go over the how to do these questions in the YouTube video 
https://youtu.be/gLao39Wcf3Y for this SECTION 12.1 [Nelson 2020a]. 
(a) Before you do anything else, delete the Excel trendline and add a series to your graph 
to show the prediction of equation (12.6). Record your graph showing the comparison with 
the unlimited growth (UG) model with the parameters 𝑁𝑁0 = 6 and 𝑘𝑘𝑖𝑖 = 0.34, which should 
already be in the spreadsheet. 
(b) Using the techniques we learned in CHAPTER 6, use Excel’s Solver to do a least-squares 
fit to equation (12.6) and record your least-squares fit to the USA data up to day 19 of the 
COVID-19 epidemic in the US. Record your graph showing the least-squares fit to the 
USA data. 

About what you discovered: scientists need to be objective 
As we discussed CHAPTER 5, it’s important for scientists to question everything [tomtom5418 
2012], including our own optimistic expectations. You should always do a sanity check when you 
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look at any graph including a fit to data. The fact that the last five data points in Fig.12.06 are 
lower than the “exponential trendline” fit should make you prick up your scientific ears. What’s 
going on? Why are the last 5 days different? Are we doing this right? As we’ve learned from the 
marble game, there’s always some kind of unpredictability in real world data. The least-squares 
fit in Fig.12.07 shows that the USA data are more evenly spread around the prediction – but that’s 
precisely what a least-squares fit does! The question is not whether there’s an even spread but 
whether there are systematic deviations. That can be answered best with a residuals graph 
(CHAPTER 4). But in the case of exponential growth or decay we can also gain the same insights 
from a semi-log graph … 
Note: This section was written at USA day 19 (March 16, 2020). As of this writing, I have no 
idea of what’s going to happen next … my sincere hope is that social distancing etc. will slow the 
rate of infection by reducing 𝑘𝑘𝑖𝑖 in the US … the data from China seem encouraging – that  𝑘𝑘𝑖𝑖 can 
be reduced – but the future is the undiscovered country … in the meantime, let’s see what our 
modeling approach can tell us about what to expect in the future. 
 

 
Fig.12.07 Excel chart comparing the exponential growth model of equation (12.6) with reported data for  
the USA in the 19 days since February 26, 2020. The dotted line is a more scientific least-squares fit to the  
USA data for the “first 19 days.” The fitted model parameters are 𝑁𝑁0 = 23 and 𝑘𝑘𝑖𝑖 = 0.26 d−1. Data source  
ECDC [2020]. 

 

Semi-log graphs – a different perspective 
 

 Q.12.10  DISCUSSION QUESTION  (a) Change the vertical axis of your graph from Q.12.08(a) 
to a Logarithmic scale. Record your graph. 
(b) Change the vertical axis of your graph from Q.12.09(b) to a Logarithmic scale. Record 
your graph. 
(c) As we discovered in CHAPTERS 4 and 6, there’s a technical difference between the 
least-squares fit to an exponential function (Q.12.09) Fig.12.07 and Excel’s exponential 
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trendline fit in (Q.12.08(a)) Fig.06 – see the “exponential fit technicality” AWYD in 
CHAPTER 4. Briefly explain any differences you see. 

About what you discovered: technicality – bias in Excel’s exponential trendline 
Fig.12.08 shows a semi-log graph that shows a combination of your answers to Q.12.10(a) and 
(b) (you weren’t expected to make this combined graph). The LS fit is the same fit as in Fig.12.07. 
It minimizes the sum of the squares of the residuals in the graph of Fig.12.07. As we discovered 
in CHAPTERS 4 and 6, Excel’s exponential trendline is actually a linear regression to the log of 
the data that minimizes the sum of the squares of the residuals of the log values – when it’s 
rescaled as shown in Fig.12.08, which makes all the residuals equally important when viewed on 
a semi-log graph like Fig.12.08. In contrast, the LS fit in Fig.12.08 makes all the residuals equally 
important when viewed on an unscaled (linear scale) graph like Fig.12.07. 
 

 
Fig.12.08 Excel semi-log chart comparing the exponential growth model of equation (12.6) with reported  
data for the USA in the 19 days since February 26, 2020. The dotted line is Excel’s “exponential trendline” and  
the dashed line is a more scientific least-squares fit to the USA data for the “first 19 days.” The fitted model  
parameters are  𝑁𝑁0 = 6.0 and 𝑘𝑘𝑖𝑖 = 0.34 d−1 for the Excel trendline and 𝑁𝑁0 = 23 and 𝑘𝑘𝑖𝑖 = 0.26 d−1 for the LS fit. 
Data source ECDC [2020]. Note: You weren’t expected to combine the graphs for Q.12.10(a) and (b) to make  
Fig.12.08.  

 
The net result is that the Excel exponential trendline is biased toward the low values early on 
and the LS fit is not. However, because of the shape of the exponential curve, any deviations from 
the model at high 𝑅𝑅𝑖𝑖 will produce larger absolute residuals, if there’s a fixed percentage 
measurement variability. That will make the LS fit on a semi-log plot appear to be biased towards 
the large numbers at later times. This means that if social distancing is flattening the curve, then 
the first indication should be a decrease in the LS-fitted infection rate constant 𝑘𝑘𝑖𝑖 …  
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12.2 Finite population (FP) model 

Finite population model 

 
Fig.12.09 FD diagram of a two-box epidemiological model exhibiting limited growth. The two boxes in this 
finite population (FP) model represent the two parts of the model population that can be affected by the 
disease. Box 𝑠𝑠 represents the portion susceptible to the disease. Box 𝑖𝑖 represents the portion infectious. 
Lowercase 𝑠𝑠 is the fraction of the model population that are still susceptible to infection.  

 
One of the problems with our unlimited growth model is that the spread of the disease is – well 
– unlimited! The obvious way to overcome that limitation is to change the model so that it 
considers the finite nature of the susceptible population. For example, if you’re modeling the 
situation in New Zealand, the total number infectious 𝑁𝑁𝑖𝑖 can’t possibly ever be more that 4.8 
million – the total population of New Zealand (as of March, 2020). 
 
Fig.12.09 shows a two-box model that modifies the infection rate 𝑅𝑅𝑖𝑖 to be 
 
 𝑅𝑅𝑖𝑖 = 𝑘𝑘𝑖𝑖𝑁𝑁𝑖𝑖𝑠𝑠 (12.8) 
 
where 𝑘𝑘𝑖𝑖  [=] 1/d is the infection rate constant with units of “per day per infectious person,” 
𝑁𝑁𝑖𝑖  [=] 1 is the number of infectious people and 𝑠𝑠 [=] 1 is the susceptible fraction (note the 
lowercase “𝑠𝑠”) of the population defined by 

 𝑠𝑠 ≡
𝑁𝑁𝑠𝑠
𝑁𝑁

 (12.9) 

 
where 𝑁𝑁𝑠𝑠 is the number susceptible and 𝑁𝑁 (with no subscript) is the total number of people in 
the model population, where 
 𝑁𝑁 = 𝑁𝑁𝑠𝑠 + 𝑁𝑁𝑖𝑖 (12.10) 
 
The idea behind equation (12.8) can be understood by thinking about the GlowScript sim 
MarbleGame once it reaches equilibrium at about 𝑡𝑡 ≈ 2 ms. The marbles are then evenly spread 
out throughout the two boxes. If the marbles represent people, infections occur when they get 
close together. If we assume that encounters between people occur at a constant rate, then the 
probability that an infectious person interacts with a susceptible person (as opposed to another 
infectious person) is simply 𝑠𝑠 the fraction of the model population that’s susceptible. In other 
words, 𝑠𝑠 is the fraction of people that an infectious person encounters that are still susceptible to 
the virus (that’s what equation (12.9) defines as the susceptible fraction). 
 

infectious  susceptible 

𝑘𝑘𝑖𝑖𝑁𝑁𝑖𝑖𝑠𝑠 
𝒔𝒔 𝒊𝒊 

http://circle4.com/biophysics
https://www.worldometers.info/world-population/new-zealand-population/
https://www.worldometers.info/world-population/new-zealand-population/
https://www.glowscript.org/#/user/LyonSays/folder/BPM/program/MarbleGame


Chapter 12: COVID-19 and epidemiology (web edition) Page 16 of 124  v.4.4 © Peter Hugo Nelson 2023 
 

 Biophysics and Physiological Modeling Page 16 of 124    http://circle4.com/biophysics 

A logical consequence of equation (12.8) is that at the beginning of the epidemic, the susceptible 
fraction is close to one as 𝑁𝑁𝑠𝑠 ≈ 𝑁𝑁 so that 
 

 𝑠𝑠 =
𝑁𝑁𝑠𝑠
𝑁𝑁
≈
𝑁𝑁
𝑁𝑁

= 1 (12.11) 

 
and equation (12.8) reduces to equation (12.1). (Yes, you should go back and reread equations 
(12.8) and (12.1) to make sure you understand why.) As the epidemic progresses, the susceptible 
fraction 𝑠𝑠 will decrease – eventually going to zero – once the whole model population is infectious 
and 𝑠𝑠 = 0. When that happens, the infection rate 𝑅𝑅𝑖𝑖 also goes to zero. Hence, equation (12.8) 
makes the infection rate 𝑅𝑅𝑖𝑖 proportional to the susceptible fraction 𝑠𝑠, so that as the susceptible 
fraction 𝑠𝑠 get smaller the infection rate 𝑅𝑅𝑖𝑖 gets proportionally slower.  
 

 Q.12.11  (a) Substitute the definition (12.9) of 𝑠𝑠 into equation (12.8) and solve equation 
(12.10) for 𝑁𝑁𝑠𝑠 to show that our finite population model can be calculated using the 
following algorithm instructions 

 
 𝑅𝑅𝑖𝑖new = 𝑘𝑘𝑖𝑖 ∗ 𝑁𝑁𝑖𝑖old ∗ 𝑁𝑁𝑠𝑠old/𝑁𝑁 (12.12) 
 
 𝑁𝑁𝑖𝑖new = 𝑁𝑁𝑖𝑖old + 𝑅𝑅𝑖𝑖new ∗ δ𝑡𝑡 (12.4) 

and 
 𝑁𝑁𝑠𝑠new = 𝑁𝑁 − 𝑁𝑁𝑖𝑖new (12.13) 

 
(b) Using equations (12.12), (12.4) and (12.13) write out a complete FD algorithm, 
including unit checks, to calculate the infection rate 𝑅𝑅𝑖𝑖(𝑡𝑡) and the number infectious 𝑁𝑁𝑖𝑖(𝑡𝑡), 
for a model population of 𝑁𝑁 = 1000 individuals using a timestep of δ𝑡𝑡 = 1 d, an infection 
rate constant of 𝑘𝑘𝑖𝑖 = 0.3 d−1, and an initial number infectious of 𝑁𝑁0 = 1.  
(c) By hand, calculate steps 0, 1, and 2 of your finite difference algorithm and record your 
answer in the form of an FD output table. 
Hint: As usual, you should do parts (b) and (c) of this question together. It’s easier that 
way. 
 
 Q.12.12  (a) Open the preformatted spreadsheet BPM.Ch12_Finite_population.xlsx and 
fill in the blank cells with your algorithm and check that you get exactly the same results 
that you calculated by hand in Q.12.11(c). The spreadsheet should automatically plot both 
the new infection rate 𝑅𝑅𝑖𝑖 and the number infectious 𝑁𝑁𝑖𝑖 and the number susceptible 𝑁𝑁𝑠𝑠 as a 
function of time. As always, you then need to reduce the timestep δ𝑡𝑡 and add enough steps 
so that the curves visually reach a steady state at the end of the model. Record your graph 
for the new infection rate 𝑅𝑅𝑖𝑖 as a function of time. 
Hint: The preformatted spreadsheet charts extend to row 5003 for a good reason. 
(b) Briefly explain why the model curve for the infection rate 𝑅𝑅𝑖𝑖 has a peak whereas the 
number infectious 𝑁𝑁𝑖𝑖 always increases. 
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Social distancing Social distancing – flattening the curve 
It seems obvious that if everybody has fewer physical interactions – social distancing – that will 
lower the rate that infectious people interact with susceptible people. We can account for that 
effect in our finite population model by reducing the infection rate constant 𝑘𝑘𝑖𝑖. In other words, if 
we reduce the rate of social interaction between all people in the population, then the infection 
rate constant 𝑘𝑘𝑖𝑖 should be reduced proportionally. 
 

 Q.12.13  DISCUSSION QUESTION  (a) To see the effect of social distancing on the FP model, 
change the infection rate constant to 𝑘𝑘𝑖𝑖 = 0.15 d−1 (i.e., one half of the original model), 
then extend your graph in time until the graphs once again reach a steady state at the end 
of the model. Record your graph for the new infection rate 𝑅𝑅𝑖𝑖 as a function of time. 
Hint: You can use a longer timestep δ𝑡𝑡 than in Q.12.12. 
(b) Change the infection rate constant to 𝑘𝑘𝑖𝑖 = 0.075 d−1 (i.e., one quarter of the original 
model). Record your graph for the new infection rate 𝑅𝑅𝑖𝑖 as a function of time. 
(c) Briefly describe how decreasing the infection rate constant (by social distancing, mask 
wearing etc.) affects the model by discussing the timing and magnitude of the peak value 
in the new infection rate 𝑅𝑅𝑖𝑖. 
(d) Briefly explain if you think this is a good example of the effect of social distancing. as 
illustrated in Fig.12.02? 
 
 Q.12.14  (a) Change the infection rate constant back to 𝑘𝑘𝑖𝑖 = 0.3 d−1, and then increase the 
model population to 𝑁𝑁 = 10,000, and then 𝑁𝑁 = 1,000,000. Briefly describe how changing 
the population size changes the model by discussing the magnitude and peak value of the 
new infection rate 𝑅𝑅𝑖𝑖. 
(c) Does everyone in the model population still become infectious in this FP model? Briefly 
explain if social distancing etc. or changing the population size has an effect on the fraction 
susceptible 𝑠𝑠 = 𝑁𝑁𝑠𝑠/𝑁𝑁 at the end of the model.  
(c) Change the model population to 𝑁𝑁 = 3.3 × 108, the estimated total population in the 
US in mid-April, 2020. Briefly describe what you can conclude about the FP model’s 
predictions. 
Reminder: You can enter 𝑁𝑁 = 3.3 × 108 into Excel as 3.3e8.  

About what you discovered: social distancing – flattening the curve  
Fig.12.10 shows a graph that shows a combination of your answers to Q.12.12(a) and Q.12.13(a) 
(you weren’t expected to make this combined graph or use the Area Chart format that I used in 
Excel).  
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Fig.12.10 Excel area chart showing the predictions of the finite population (FP) model (12.8) for a model  
population of 𝑁𝑁 = 1000, an infection rate constant of 𝑘𝑘𝑖𝑖 = 0.3 d−1, an initial number infectious of 𝑁𝑁0 = 1  
and a timestep of δ𝑡𝑡 = 1 d (this is way too big!). The “with social distancing” curve shows the effect of  
reducing the infection rate constant by a factor of 2 on day 0 to 𝑘𝑘𝑖𝑖 = 0.15 d−1 by implementing social  
distancing etc. Q. This graph looks like Fig.12.02, but is this graph showing the same  
thing? … As a scientist, you should be taking note! 

 
If you answer  CHALLENGE CALCULUS QUESTION  Q.12.17 (below), you might be able to show why it 
appears that 𝑅𝑅𝑖𝑖max ∝ 𝑘𝑘𝑖𝑖 and that the time of the peak is inversely proportional to 𝑘𝑘𝑖𝑖.  
 

 Q.12.15  (a) Briefly describe the similarities between our figure Fig.12.10 and the example 
of social distancing at the beginning of this chapter (Fig.12.02). 
(b) Briefly describe any differences between our figure Fig.12.10 and the example of social 
distancing at the beginning of this chapter (Fig.12.02). 

 
 Q.12.16  Before reading ahead, briefly describe what you think the main limitations of the 
two-box finite population model are. Think about what happens in real life, no points off 
if you don’t come up with the same things that I did. Thinking critically about models and 
their limitations is one of the main skills that we’ve been developing. Maybe you’ll come 
up with something better than I did. I hope so … 
 
 Q.12.17  CHALLENGE CALCULUS QUESTION  Can you derive an analytical equation for 𝑁𝑁𝑖𝑖(𝑡𝑡) 
and 𝑅𝑅𝑖𝑖(𝑡𝑡) predicted by the FP model? As of this writing, I have no idea whether that’s even 
possible! 

About what you discovered: Flatten the curve – but not reducing the number infected 
As our FP model shows in Fig.12.10, social distancing will flatten the curve thereby reducing the 
peak infection rate preventing hospitals from being overwhelmed by the rate of new infections. 
However, the FP model also predicts that the all susceptible individuals will eventually be infected 
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– that’s what you discovered in Q.12.14. It also explains why the areas under the two curves in 
Fig.12.10 and Fig.12.02 are the same. That idea can be summarized by 
 

 𝑁𝑁∞ = � 𝑅𝑅𝑖𝑖d𝑡𝑡
∞

−∞
= 𝑁𝑁 (12.14) 

 
which defines 𝑁𝑁∞ (pronounced “N infinity”) as the cumulative total number infected as 𝑡𝑡 → ∞ 
(in the FP model). You don’t need to have calculus to understand equation (12.14). As we 
discovered in CHAPTER 8, the integral in the middle of equation (12.14) reads “the area under the 
𝑅𝑅𝑖𝑖(𝑡𝑡) curve from 𝑡𝑡 = −∞ to 𝑡𝑡 = ∞,” i.e., “for all time.” In CHAPTER 8 we also learned how to 
calculate that area using Excel rather than calculus. Equation (12.14) also includes the prediction 
of the FP model that 𝑁𝑁∞ = 𝑁𝑁, i.e., that everyone in the model population will eventually get 
infected. 
 
I recently (in mid-April 2020) have seen journalists and medically qualified commentators on 
cable TV make similar predictions about social distancing. To quote one well-respected journalist  
 
 “… the whole point of flattening the curve is you’re actually not reducing the number  

of people who will eventually get infected and sick until we get a cure or a vaccine.  
You’re spreading it out over a longer period of time, so the health care system can  
handle it.”  

 
While that is what the FP model predicts, the “SIR model” shows that that prediction is not correct. 
In the next section, we’ll investigate the SIR model, which predicts that social distancing and 
mask wearing etc. not only lowers the peak in the infection rate, but it reduces the cumulative total 
number infected in the outbreak, or – if implemented early enough – can even prevent the outbreak 
from occurring at all!  Let’s see what we can discover …  

12.3 SIR model 

Epidemiological modeling 
The main problem with our finite population model is that people don’t recover – ever. In other 
words, anyone who’s infected always remains infectious! Clearly, that’s not realistic, people do 
recover from COVID-19 and hence stop being infectious after a period of time. Fig.12.11 shows 
an FD diagram of an epidemiological model that’s quite famous and is known as the susceptible-
infected-recovered model or SIR model, for reasons that should be obvious when you look at 
Fig.12.11. 
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Fig.12.11 FD diagram of the SIR epidemiological model. The three boxes represent the three parts of the 
model population that can be affected by the disease. Box 𝑠𝑠 represents the portion that’s susceptible to the 
disease. Box 𝑖𝑖 represents the portion infectious. Box 𝑟𝑟 represents the portion that’s recovered from the 
infection (or died). Sometimes this box is labeled removed – as in removed from consideration. 

 
The three boxes in Fig.12.11 represent the possible states of people in the model population. Just 
like the previous UG and FP models, the criterion for being in the model population is that an 
individual can be infected and that their infection will be officially reported. That means that we’re 
excluding any individuals who could be infected but only get mild or asymptomatic cases and are 
not tested so that their cases are not officially reported. It’s currently estimated (mid 2020) that 
only between 10-50% of cases are officially reported in the US (more on this topic later).  
 
Many features of the SIR model are the same as the finite population (FP) model. The number 
susceptible, is represented by 𝑁𝑁𝑠𝑠. Lowercase 𝑠𝑠 represents the susceptible fraction defined by 
equation (12.9). The number infectious is represented by uppercase 𝑁𝑁𝑖𝑖. The number recovered 
is represented by 𝑁𝑁𝑟𝑟. It’s the number of individuals in the model population that have been infected 
– but have now recovered and are no longer infectious and are further assumed to be immune to 
the disease forever. The symbol 𝑁𝑁𝑟𝑟 more correctly stands for the number removed from the 
susceptible or infectious boxes. In addition to recovering, individuals can be removed from the 
number infectious by being isolated from the susceptible portion of the population and they can 
be removed by death. All of those individuals are represented by box 𝑟𝑟. We also have a 
relationship with the total number 𝑁𝑁 in the model population and it spells out the initials of the 
SIR model in the subscripts of the bookkeeping equation  (12.15) 
 
 
 𝑁𝑁 = 𝑁𝑁𝑠𝑠 + 𝑁𝑁𝑖𝑖 + 𝑁𝑁𝑟𝑟  (12.15) 
 
It’s called the bookkeeping equation because it reflects that the fact that all the numbers must 
add up to the model population size 𝑁𝑁. 
 
The model is still extremely simplified. It assumes that humans behave just like the molecules in 
the marble game, i.e., they randomly walk around and have random interactions with anyone in 
the whole population – just like the molecules we studied in CHAPTER 10, and as shown in the 
GlowScript sim MarbleGame. In other words, we’re assuming that the individuals in the 
population are just like the Green day song “Boulevard of Broken Dreams” – they walk alone 
until they find someone and either get infected (if they’re in box 𝑠𝑠) or infect the person they found 
(if they’re in box 𝑖𝑖). In this model, we’re assuming that recovered (removed) individuals (box 𝑟𝑟) 
can’t infect anyone and that they’re now permanently immune from infection. That’s a lot of 

infectious  recovered  susceptible 

𝑘𝑘𝑖𝑖𝑁𝑁𝑖𝑖𝑠𝑠 
𝒔𝒔 

𝑘𝑘𝑟𝑟𝑁𝑁𝑖𝑖 𝒊𝒊 𝒓𝒓 
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obviously over-simplified assumptions, but it does give us an easy-to-understand model of how 
an epidemic spreads. It’s worthwhile restating at this point that we’re only trying to understand 
the basics of epidemiology with our SIR model. After we understand the basic model and what it 
explains, then we can start thinking about improving the model to make it more realistic. As we’ve 
discovered over and over in this book, simple models often do way better than you might 
reasonably expect. Let’s see what we can discover … 
 
Now that we’ve talked about the main limitations of the SIR model, let’s talk about how it works 
and what insights it provides. The first thing about the model that you should notice is that the 
only thing that can happen to susceptible people is that they become infectious! The first question 
you might then ask is – “What’s the likelihood that they don’t ever get infected?” That’s exactly 
the kind of question that the model is designed to elucidate. However, before we can get to that 
question, we’ll need to get the model working and see what it tells us.  
 
Now that we’ve described the boxes and how they represent the three possible states of the model 
population, we can now talk about the arrows between boxes in Fig.12.11. The first arrow from 
box 𝑠𝑠 → 𝑖𝑖 represents the rate of infection. That infection rate 𝑅𝑅𝑖𝑖 = 𝑘𝑘𝑖𝑖𝑁𝑁𝑖𝑖𝑠𝑠 is given by equation 
(12.8) – the exact same equation that we used for the finite population model of Fig.12.09.  
 
The second arrow from box 𝑖𝑖 → 𝑟𝑟 represents the rate of recovery. That recovery rate is given by 
 
 𝑅𝑅𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑁𝑁𝑖𝑖 (12.16) 
 
where 𝑘𝑘𝑟𝑟  [=] d−1 is the recovery rate constant (note the 𝑟𝑟 subscripts in 𝑅𝑅𝑟𝑟 and 𝑘𝑘𝑟𝑟). Equation 
(12.16) means that the probability of any infectious person recovering is a constant – independent 
of everything, including how long they’ve been infectious (and hence been in box 𝑖𝑖). That’s a 
good assumption for radioactive decay or drug elimination because each drug molecule in your 
blood stream has an even chance of being diverted into the kidneys each time (~20 s) it flows by 
them, but infectious people are more complicated than drug molecules. The real recovery process 
takes time, and it depends on the individual and how long they’ve been infected. The model also 
includes the unrealistic possibility that an individual can recover on the same day that they become 
infectious! It’s worse than you might first think, because the most likely time for recovery in the 
Poisson process implied by equation (12.16) is … immediately! However, if you consider the 
number of people in box 𝑖𝑖 as a whole, then it seems reasonable that the overall recovery rate 
depends directly on the number infectious 𝑁𝑁𝑖𝑖. The main advantage of equation (12.16) is that it’s 
easy to understand and it gives us a simple way to predict the recovery rate 𝑅𝑅𝑟𝑟 based solely on the 
number infectious 𝑁𝑁𝑖𝑖 (12.16). Hence, we don’t have to keep track of each individual and how long 
they’ve been infected, which would be difficult to do in Excel … remember … we’re only trying 
to understand the basics of epidemiology with our SIR model. 
 
Another advantage of the SIR model (Fig.12.11) and equation (12.16) is that the mean residence 
time (CHAPTER 2) in box 𝑖𝑖 can be predicted by equation (2.4), which translates to 
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 𝜏𝜏𝑖𝑖 =
1
𝑘𝑘𝑟𝑟

 (12.17) 

 
where 𝜏𝜏𝑖𝑖, “tau i” (see the Greek letters go green! [Nelson 2013]) is the mean infectious time, 
which can be approximated by a quantity that can be measured clinically – the mean (or average) 
“recovery time.” 
 

 Q.12.18  (a) Using Fig.12.11, show that the change δ𝑁𝑁𝑖𝑖 in the number infectious 𝑁𝑁𝑖𝑖 during 
a short time δ𝑡𝑡 is given by 

 δ𝑁𝑁𝑖𝑖 = (𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑟𝑟)δ𝑡𝑡 (12.18) 
 

where 𝑅𝑅𝑖𝑖 is given by equation (12.8) and 𝑅𝑅𝑟𝑟 is given by equation (12.16). Then show that 
the change δ𝑁𝑁𝑟𝑟 in the number recovered 𝑁𝑁𝑟𝑟 is   

 
 δ𝑁𝑁𝑟𝑟 = 𝑅𝑅𝑟𝑟δ𝑡𝑡 (12.19) 
 

(b) Combining the relevant equations, including the bookkeeping equation (12.15), show 
that our SIR model can be calculated using the following algorithm instructions 

 
 𝑅𝑅𝑖𝑖new = 𝑘𝑘𝑖𝑖 ∗ 𝑁𝑁𝑖𝑖old ∗ 𝑁𝑁𝑠𝑠old/𝑁𝑁 (12.12) 
 
 𝑅𝑅𝑟𝑟new = 𝑘𝑘𝑟𝑟 ∗ 𝑁𝑁𝑖𝑖old (12.20) 
 
 𝑁𝑁𝑖𝑖new = 𝑁𝑁𝑖𝑖old + (𝑅𝑅𝑖𝑖new − 𝑅𝑅𝑟𝑟new) ∗ δ𝑡𝑡 (12.21) 
 
 𝑁𝑁𝑟𝑟new = 𝑁𝑁𝑟𝑟old + 𝑅𝑅𝑟𝑟new ∗ δ𝑡𝑡 (12.22) 

and 
 𝑁𝑁𝑠𝑠new = 𝑁𝑁 − 𝑁𝑁𝑖𝑖new − 𝑁𝑁𝑟𝑟new (12.23) 

 
(c) Using equations (12.12), (12.20) – (12.23) write out a complete FD algorithm, including 
unit checks, to calculate 𝑅𝑅𝑖𝑖(𝑡𝑡), 𝑅𝑅𝑟𝑟(𝑡𝑡), 𝑁𝑁𝑖𝑖(𝑡𝑡), 𝑁𝑁𝑟𝑟(𝑡𝑡), and 𝑁𝑁𝑠𝑠(𝑡𝑡) i.e., everything you’ll need 
to calculate how the number of infectious people 𝑁𝑁𝑖𝑖 changes with time 𝑡𝑡 for a model 
population of 𝑁𝑁 = 1000 individuals using a timestep of δ𝑡𝑡 = 1 d, an infection rate 
constant of 𝑘𝑘𝑖𝑖 = 0.36 d−1, an initial number infectious of 𝑁𝑁0 = 1, zero recovered and a 
mean infectious time of 𝜏𝜏𝑖𝑖 = 16 d. 
Hint: You’ll need to rearrange equation (12.17) to obtain an equation (12.35) for the 
calculated parameter 𝑘𝑘𝑟𝑟 in terms of the mean infectious time 𝜏𝜏𝑖𝑖. 
(d) By hand, calculate steps 0, 1, and 2 of your finite difference algorithm and record your 
answer in the form of an FD output table. 
Hint: As usual, you should do parts (c) and (d) of this question together. It’s easier that 
way. 
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 Q.12.19  (a) Open the preformatted spreadsheet BPM.Ch12_SIR_model.xlsx and fill in 
the blank cells with your algorithm and check that you get exactly the same results that you 
calculated by hand in Q.12.18(d). The spreadsheet should automatically plot all three of 
𝑁𝑁𝑠𝑠(𝑡𝑡), 𝑁𝑁𝑖𝑖(𝑡𝑡) and 𝑁𝑁𝑟𝑟(𝑡𝑡) and the both the new infection rate 𝑅𝑅𝑖𝑖(𝑡𝑡) and the recovery rate 
𝑅𝑅𝑟𝑟(𝑡𝑡) as a function of time. As always, you then need to reduce the timestep δ𝑡𝑡 to be small 
enough and add steps so that the curves visually reach a steady state at the end of the model. 
Record your graph of 𝑁𝑁𝑠𝑠, 𝑁𝑁𝑖𝑖 and 𝑁𝑁𝑟𝑟 as a function of time. 
Note: You should be sure to save separate copies of your spreadsheet answers to this 
Q.12.19, and Q.12.20(a)-(d), we’ll be needing them again later. 
(b) Record your graph of the new infection rate 𝑅𝑅𝑖𝑖 and the recovery rate 𝑅𝑅𝑟𝑟 as a function 
of time. 
(c) Carefully investigate what happens at the end of the model, e.g., at day 150 or 200. 
Briefly discuss what happens to the values of 𝑁𝑁𝑠𝑠, 𝑁𝑁𝑖𝑖 and 𝑁𝑁𝑟𝑟 at the end of the model. Does 
everyone in the model population still become infectious in this SIR model? 
(d) Briefly compare the shape of the 𝑅𝑅𝑖𝑖(𝑡𝑡) curve with the equivalent curve in Fig.12.10 for 
the FP model.  
(e) Briefly compare the shape of the 𝑁𝑁𝑖𝑖(𝑡𝑡) curve with the curves in Fig.12.10 and Fig.12.02 
and briefly discuss what you can conclude about the meaning of the axis label “Infected 
people” in Fig.12.02. 
(f) Briefly explain why the graph for 𝑁𝑁𝑖𝑖(𝑡𝑡) has a faster rise to the peak at about 𝑡𝑡 ≈ 22 d 
than the subsequent decline.  
Hint: We discussed a similar-but-different situation in Q.6.9(b). 
(g) Briefly explain why the graphs for 𝑁𝑁𝑖𝑖(𝑡𝑡) and 𝑅𝑅𝑟𝑟(𝑡𝑡) appear to have exactly the same 
shape. Note that they don’t have the same magnitude – and even more importantly – they 
have different units because they’re not the same kind of thing. 
Hint: Your answer should include one of the new equations in this section.  

About what you discovered: SIR model – infectious people recover  
Your answers to Q.12.19(a) and Q.12.19(b) should look something like Fig.12.12. As you noted 
in Q.12.19(d), the curve for the number infectious is asymmetric with a faster rise than decline. 
The reason for the two time scales is that the infection rate constant 𝑘𝑘𝑖𝑖 = 0.36 d−1 is significantly 
bigger than the recovery rate constant 𝑘𝑘𝑟𝑟 = 0.0625 d−1. Based on the rates we can estimate an 
infection time constant of 1/𝑘𝑘𝑖𝑖 = 2.8 d and a mean infectious time of 𝜏𝜏𝑖𝑖 = 1/𝑘𝑘𝑟𝑟 = 16 d. The 
shapes of the 𝑁𝑁𝑖𝑖(𝑡𝑡) and 𝑅𝑅𝑟𝑟(𝑡𝑡) curves really are identical. 𝑁𝑁𝑖𝑖(𝑡𝑡) and 𝑅𝑅𝑟𝑟(𝑡𝑡) are proportional 
because the recovery rate is related to the number infectious by 𝑅𝑅𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑁𝑁𝑖𝑖 (12.16). 
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Fig.12.12 Excel charts showing the predictions of the SIR model (Fig.12.11) for a model population of  
𝑁𝑁 = 1000, an infection rate constant of 𝑘𝑘𝑖𝑖 = 0.36 d−1, an initial number infectious of 𝑁𝑁0 = 1 and a timestep  
of δ𝑡𝑡 = 0.01 d. Chart (a) shows the numbers in the three boxes 𝑠𝑠, 𝑖𝑖 and 𝑟𝑟 of the SIR model. Chart (b) shows  
the shows the exponential dragon predicted for the infection rate infection rate 𝑅𝑅𝑖𝑖 (solid blue line) and the  
recovery rate 𝑅𝑅𝑟𝑟 (dashed orange line). Note: because of equation (12.16), the recovery rate 𝑅𝑅𝑟𝑟 is directly  
proportional to the number infectious 𝑁𝑁𝑖𝑖.  

 
A universal feature of the SIR model is that it predicts an “exponential dragon” in the infection 
rate 𝑅𝑅𝑖𝑖(𝑡𝑡) – see Fig.12.12(b). The duration of the exponential dragon is determined by the value 
of the infection rate constant 𝑘𝑘𝑖𝑖. As we’ll discover, the peak of the exponential dragon exhibits a 
characteristic inverted vee shape on a semi-log plot. The idea of using a dragon analogy for 
explosive exponential growth was inspired by the expression ‘‘tickling the dragon’s tail’’ that’s 
based on a remark by Richard Feynman about the dangers of some ill-advised early nuclear 
experiments in which exponential growth had the potential for similar catastrophic consequences 
[Nelson 2021].  
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Social distancing in the SIR model 
The effect of social distancing can be added to the SIR model using the same rationale we used 
for the FP model. Let’s see what we can discover … 
 

 Q.12.20  DISCUSSION QUESTION  (a) To see the effect of social distancing on the SIR model, 
change the infection rate constant to 𝑘𝑘𝑖𝑖 = 0.18 d−1 (i.e., about one half of the original 
model), then extend your graph in time until the graphs once again visually reach a steady 
state at the end of the model. Record your graph for the new infection rate 𝑅𝑅𝑖𝑖 as a function 
of time. 
Note: You should save separate copies of your spreadsheet answers to Q.12.19, and 
Q.12.20(a)-(d), we’ll be needing them again later. 
(b) Change the infection rate constant to 𝑘𝑘𝑖𝑖 = 0.09 d−1 (i.e., about one quarter of the 
original model). Record your graph for 𝑁𝑁𝑠𝑠, 𝑁𝑁𝑖𝑖 and 𝑁𝑁𝑟𝑟 as a function of time. 
Hint: You can use a longer timestep δ𝑡𝑡 if the graphs change more slowly. 
(c) Change the infection rate constant to 𝑘𝑘𝑖𝑖 = 0.0625 d−1 (i.e., the same as 𝑘𝑘𝑟𝑟). Record 
your graph for the new infection rate 𝑅𝑅𝑖𝑖 as a function of time. 
Hint: See the hint for part (b). 
(d) Change the infection rate constant to 𝑘𝑘𝑖𝑖 = 0.045 d−1 (i.e., about one eighth of the 
original model). Record your graph for the new infection rate 𝑅𝑅𝑖𝑖 as a function of time. 
Hint: See the hint for part (b). 
(e) Carefully investigate what happens at the end of the model when the values of 𝑁𝑁𝑠𝑠, 𝑁𝑁𝑖𝑖 
and 𝑁𝑁𝑟𝑟 reach a steady state. Briefly discuss what happens to the values of 𝑁𝑁𝑠𝑠, 𝑁𝑁𝑖𝑖 and 𝑁𝑁𝑟𝑟 at 
the end of the models with different infection rate constant 𝑘𝑘𝑖𝑖 values. Does everyone in the 
model population still get infected in these SIR models? 
(f) Briefly describe what happens to the timescale of the outbreak as 𝑘𝑘𝑖𝑖 is reduced by social 
distancing. 

About what you discovered: social distancing in the SIR model  
Fig.12.13 shows the predictions of our SIR model with 𝑘𝑘𝑖𝑖 = 0.085 d−1, 𝜏𝜏𝑖𝑖 = 1/𝑘𝑘𝑟𝑟 = 16 d and 
𝑁𝑁 = 1000. (Note, this graph is not an answer to any one of your answers to Q.12.20.) This graph 
confirms what Espe said at the beginning of this chapter – that social distancing not only flattens 
the curve, but it can substantially reduce the cumulative total number infected in the outbreak. In 
Fig.12.13 the percentage of the model population that ultimately get infected is about 48% 
(obtained from the number recovered at the end of the graph). You can confirm my graph by 
putting 𝑘𝑘𝑖𝑖 = 0.085 d−1 into the spreadsheet you used for Q.12.20(d).  
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Fig.12.13 Excel chart showing the predictions of the SIR model (Fig.12.11) for a model population of  
𝑁𝑁 = 1000, an infection rate constant of 𝑘𝑘𝑖𝑖 = 0.085 d−1, an initial number infectious of 𝑁𝑁0 = 1 and a timestep  
of δ𝑡𝑡 = 0.02 d. Note: the cumulative total infected 𝑁𝑁∞ is about 48 % of 𝑁𝑁 = 1000. 

 
Okay, so that’s all well and good, but there’s a catch – a long one – that you discussed in your 
answer to Q.12.20(f). The timescale of the model outbreak shown in Fig.12.13 is surprisingly 
long.  I changed the units of time 𝑡𝑡 in Fig.12.13 to weeks to make that easier to see. The duration 
of the outbreak is depressingly long in this model … over a year!  

Changing the starting point 
 

 Q.12.21  (a) Change the infection rate constant back to 𝑘𝑘𝑖𝑖 = 0.36 d−1 and the timestep to 
δ𝑡𝑡 = 0.01 d, then increase the total model population to 𝑁𝑁 = 10,000. Set the initial 
number infected to 𝑁𝑁0 = 1 then change it to 𝑁𝑁0 = 10. Briefly describe how changing the 
initial number infected 𝑁𝑁0 changes the model by discussing what happens to the magnitude 
of the peak in 𝑁𝑁𝑖𝑖(𝑡𝑡) and the change in the time of the peak in 𝑁𝑁𝑖𝑖(𝑡𝑡). 
Hint: After you make the change, you can use Undo (Ctrl+Z) and Redo (Ctrl+Y) to switch 
between them – look at the graphs as they change to get a visual idea of the comparison.  
(b) Briefly describe how the magnitude and time of the peak value of the new infection rate 
𝑅𝑅𝑖𝑖(𝑡𝑡) changes when you change the initial number infected from 𝑁𝑁0 = 1 to 𝑁𝑁0 = 10. 
(c) Use the same technique for 𝑁𝑁0 = 100, 1000, 5000. Briefly summarize what you 
discovered. Focus on how the model is changed at comparable times relative to the peaks 
in the infection and recovery rates. 
(d) Briefly describe what happens to the SIR model when 𝑁𝑁0 = 0 and 𝑁𝑁0 = 10,000. 

About what you discovered: changing the starting point  
As you discovered in Q.12.21, the basic effect of increasing the initial number infected is to 
change the starting point of the model. This suggests that we can skip over the slow initial period 
of growth in the number infected by simply starting with a higher initial number infected 𝑁𝑁0. You 
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should have discovered that this approximation (of skipping over the initial infections and 
recoveries) works best if the initial fraction infectious  
 

 𝑖𝑖0 =
𝑁𝑁0
𝑁𝑁

 (12.24) 

 
is small, i.e., 𝑖𝑖0 ≪ 1. As you discovered in Q.12.21(c) even 𝑖𝑖0 = 0.1 is small enough for the model 
to still be basically the same as before, just skipping the initial growth in 𝑁𝑁𝑖𝑖.  

The effect of population size 
 

 Q.12.22  (a) Change the infection rate constant back to 𝑘𝑘𝑖𝑖 = 0.36 d−1, then change the 
total model population to 𝑁𝑁 = 100. Set the initial number infected to 𝑁𝑁0 = 1. Then change 
the model population to 𝑁𝑁 = 1000, 104, 105, 106, 107, 108, 109. Briefly describe how 
changing the population size 𝑁𝑁 changes the model by discussing the magnitude and time 
of the peak in the number infectious 𝑁𝑁𝑖𝑖. 
Hint: After making all the changes, you can use Undo (Ctrl+Z) and Redo (Ctrl+Y) to cycle 
between them – look at the graphs as they change to get a visual idea of the comparison.  
(b) Make a fresh copy of your spreadsheet for this question. Make the initial fraction 
infectious 𝑖𝑖0 a parameter and change the instruction for 𝑁𝑁𝑖𝑖 in step zero to be 

 
 𝑁𝑁𝑖𝑖new = 𝑁𝑁 ∗ 𝑖𝑖0 (12.25) 
 

Note: Equation (12.25) should remind you of what we did with 𝑥𝑥0 in our first algorithm of 
the marble game in CHAPTER 2. 
Set the initial fraction infected to 𝑖𝑖0 = 0.001, or one in a thousand, then change the model 
population to 𝑁𝑁 = 100, then 𝑁𝑁 = 1000, 104, 105, 106, 107, 108, 109. Briefly describe how 
changing the population size 𝑁𝑁 changes the model with the initial fraction infraction 𝑖𝑖0 
held constant by discussing the magnitude and time of the peak in the number infectious 
𝑁𝑁𝑖𝑖. 
(c) Compare the time of the peak in the number infectious with your answers to part (a). 
What value of 𝑁𝑁 does it correspond to? It should be one of 𝑁𝑁 ∈
{1000, 104, 105, 106, 107, 108, 109}. Briefly explain why. 

About what you discovered: scaling the SIR model – size doesn’t really matter 
As you discovered in Q.12.22, model populations of all sizes in the SIR model behave in a similar 
manner if they start with the same initial fraction infectious 𝑖𝑖0. This suggests that we can change 
the units of 𝑁𝑁𝑠𝑠, 𝑁𝑁𝑖𝑖 and 𝑁𝑁𝑟𝑟 in the model to percentages (or fractions) and model a population of 
any size. That’s what you’ll often find if you search for the SIR model online. Obviously, treating 
the whole of the US as one model population is an oversimplification, but as we’ve discovered, 
much can be learnt from simplified models. However, we must always keep in mind that there are 
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limitations to any model – particularly when we’re trying to understand a human population. 
People aren’t molecules.  
 

 Q.12.23  MATH QUESTION  For the mathematically inclined. Prove that the SIR model can 
be divided by any constant number without affecting the relative values of 𝑁𝑁𝑠𝑠, 𝑁𝑁𝑖𝑖 and 𝑁𝑁𝑟𝑟 
and hence show that we can simply set the model population size to 𝑁𝑁 = 100 and then 
interpret 𝑁𝑁𝑠𝑠, 𝑁𝑁𝑖𝑖 and 𝑁𝑁𝑟𝑟 as the percent susceptible, percent infectious and percent 
recovered, respectively of the model population – whatever size it is – and without 
changing the model parameters 𝑘𝑘𝑖𝑖, 𝜏𝜏𝑟𝑟 That then shows that if 𝑁𝑁 = 100, we can simply 
think of 𝑁𝑁0 as the initial percent infectious. 

Finding the peak in the 𝑵𝑵𝒊𝒊(𝒕𝒕) curve 
 

 Q.12.24  (a) Carefully inspect your 𝑅𝑅𝑖𝑖(𝑡𝑡) and 𝑅𝑅𝑟𝑟(𝑡𝑡) graphs for Q.12.19, Q.12.20(a) and 
Q.12.20(b). There’s something interesting that always happens to 𝑅𝑅𝑟𝑟(𝑡𝑡) when 𝑅𝑅𝑖𝑖(𝑡𝑡) 
crosses over it. Briefly describe what you discovered. 
(b) Before reading ahead, see if you can explain what you observed. No points off if you 
can’t. The purpose of simple models is to give us questions like this to answer. They might 
just be mathematical curiosities, or they might provide us with important insights into 
epidemiological modeling with the SIR model. 
Hint: Recall that equation (12.16) predicts that 𝑅𝑅𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑁𝑁𝑖𝑖, so that the shape of the 𝑅𝑅𝑟𝑟(𝑡𝑡) 
curve is the same as the shape of the 𝑁𝑁𝑖𝑖(𝑡𝑡) curve.  

 
If we’re interested in understanding how to flatten the curve, then obviously we’d like to 
understand as much as we can about what’s happening in the model when the number infectious 
𝑁𝑁𝑖𝑖 peaks. The discovery you made in Q.12.24 is central to that understanding. Before we get into 
the math, let’s talk about the FD diagram of the SIR model – it provides us with the essential 
conceptual understanding of how the SIR model works. Let’s take the time now to look once again 
at Fig.12.11, and see what we can discover… 
 

 Q.12.25  (a) Look carefully at box 𝑖𝑖 in Fig.12.11. It has two arrows touching it. The arrow 
on the left represents the infection rate 𝑅𝑅𝑖𝑖 = 𝑘𝑘𝑖𝑖𝑁𝑁𝑖𝑖𝑠𝑠, which increases the number infectious. 
The arrow on the right represents the recovery rate 𝑅𝑅𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑁𝑁𝑖𝑖, which decreases the number 
infectious. If the number infectious is increasing, write the corresponding mathematical 
relationship between 𝑅𝑅𝑖𝑖 and 𝑅𝑅𝑟𝑟. 
Hint: Your answers for parts (a)-(c) should be one of 𝑅𝑅𝑖𝑖 < 𝑅𝑅𝑟𝑟, 𝑅𝑅𝑖𝑖 = 𝑅𝑅𝑟𝑟, or 𝑅𝑅𝑖𝑖 > 𝑅𝑅𝑟𝑟. 
(b) If the number infectious is decreasing write is the mathematical relationship between 
𝑅𝑅𝑖𝑖 and 𝑅𝑅𝑟𝑟. 
(c) If the number infectious is momentarily constant write is the mathematical relationship 
between 𝑅𝑅𝑖𝑖 and 𝑅𝑅𝑟𝑟. 
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(d) Looking at the shapes of your spreadsheet 𝑁𝑁𝑖𝑖(𝑡𝑡) curves for Q.12.19, Q.12.20(a) and 
Q.12.20(b), briefly describe in words the point in time all those 𝑁𝑁𝑖𝑖(𝑡𝑡) curves that 
corresponds to 𝑅𝑅𝑖𝑖 = 𝑅𝑅𝑟𝑟.  
Hint: A good answer would fill in the blank – “The point in time where 𝑅𝑅𝑖𝑖 = 𝑅𝑅𝑟𝑟 
corresponds to the ____ of the 𝑁𝑁𝑖𝑖(𝑡𝑡) curve.” (It’s important to note that this is not the peak 
in 𝑅𝑅𝑖𝑖, but the peak in 𝑁𝑁𝑖𝑖.) 

 
Okay, so now that we know that the peak in the number infectious 𝑁𝑁𝑖𝑖(𝑡𝑡) corresponds to  
 
 𝑅𝑅𝑖𝑖 = 𝑅𝑅𝑟𝑟 (12.26) 
let’s see what we can discover … 
 

 Q.12.26  By substituting equations (12.8) and (12.16) into equation (12.26), show that the 
value of the fraction susceptible 𝑠𝑠 at the peak in 𝑁𝑁𝑖𝑖 is given by 

 

 𝑠𝑠𝑝𝑝 =
𝑘𝑘𝑟𝑟
𝑘𝑘𝑖𝑖

=
1
ℛ0

 (12.27) 

where ℛ0 is given by 

 ℛ0 =
𝑘𝑘𝑖𝑖
𝑘𝑘𝑟𝑟

=
1
𝑠𝑠𝑝𝑝

 (12.28) 

 
Note the use of uppercase script ℛ to differentiate ℛ0 from all the other “𝑅𝑅”s that we’ve 
used so far. This quantity ℛ0 (pronounced “R naught”) is the same one that you might have 
heard about on TV or read about online. It’s called the basic reproduction number. Let’s 
see what we can discover about it using our SIR model… but before we do that, let’s first 
talk about 𝑠𝑠𝑝𝑝, which is the fraction susceptible at the peak in 𝑵𝑵𝒊𝒊(𝒕𝒕). It’s going to tell us 
a great deal more than I first expected… 

Testing equation (12.27) – predicting the peak 
 

 Q.12.27  (a) Briefly compare the predictions of equation (12.27) with your model data for 
Q.12.19, Q.12.20(a), Q.12.20(b) and Q.12.20(c).  
Hint: You might find the preformatted spreadsheet BPM.Ch02_Talking_numbers.xlsx 
useful.  
(b) Briefly compare the predictions of equation (12.27) with your model data for 
Q.12.20(d). Can you explain what’s going on with the model and why equation (12.27) for 
𝑠𝑠𝑝𝑝 doesn’t apply to the SIR model of question Q.12.20(d)? 

About what you discovered: 𝒔𝒔𝒑𝒑 the susceptible fraction at peak number infectious 
The calculated parameter 𝑠𝑠𝑝𝑝 tells us the fraction of the model population that have not been 
infected at the time 𝑡𝑡𝑝𝑝 of the peak in the number infectious 𝑁𝑁𝑖𝑖(𝑡𝑡). Hence, the value of 𝑠𝑠𝑝𝑝 is a 
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measure of the intensity of the outbreak. The smaller 𝑠𝑠𝑝𝑝, the fewer susceptible people are left at 
time 𝑡𝑡𝑝𝑝. The larger 𝑠𝑠𝑝𝑝, the more susceptible people are left at the peak in 𝑁𝑁𝑖𝑖(𝑡𝑡). Hence, 𝑠𝑠𝑝𝑝 gives 
us a good measure of how much the curve has been flattened. The larger 𝑠𝑠𝑝𝑝 is – the flatter the 
curve in the SIR model. In other words, equation (12.27) gives us a simple way to predict how 
changing either the infection rate constant 𝑘𝑘𝑖𝑖 or the recovery rate constant 𝑘𝑘𝑟𝑟 flattens the curve. 
 

Herd immunity  
After the peak, the SIR model predicts that the number infectious 𝑁𝑁𝑖𝑖 will steadily decline because 
the rate of infection 𝑅𝑅𝑖𝑖 is less than the rate of recovery 𝑅𝑅𝑟𝑟. This can be related to an 
epidemiological concept that you might have heard about – herd immunity. One way to see how 
the two concepts are related is to consider the quantity 1 − 𝑠𝑠𝑝𝑝, which is the cumulative fraction 
that have been infected at time 𝑡𝑡𝑝𝑝. Let’s see how that works… 
 
But before we do that, let’s define the fraction infectious 𝑖𝑖 as 
 

 𝑖𝑖 ≡
𝑁𝑁𝑖𝑖
𝑁𝑁

 (12.29) 

and the fraction recovered as 

 𝑟𝑟 ≡
𝑁𝑁𝑟𝑟
𝑁𝑁

 (12.30) 

 
We can then define 𝑖𝑖𝑝𝑝 as the fraction infectious at time 𝑡𝑡𝑝𝑝 and 𝑟𝑟𝑝𝑝 as the fraction recovered at time 
𝑡𝑡𝑝𝑝.  It’s then easy to use equation (12.15) to show that 
 
 𝑠𝑠𝑝𝑝 + 𝑖𝑖𝑝𝑝 + 𝑟𝑟𝑝𝑝 = 1 (12.31) 
 
so that 1 − 𝑠𝑠𝑝𝑝 = 𝑖𝑖𝑝𝑝 + 𝑟𝑟𝑝𝑝. Hence, the quantity 1 − 𝑠𝑠𝑝𝑝 is the sum of 𝑖𝑖𝑝𝑝 + 𝑟𝑟𝑝𝑝, which is simply the 
cumulative total number of people that have previously been infected at time 𝑡𝑡𝑝𝑝. Now, our SIR 
model assumes that individuals who’ve been infected once can’t be infected again. Hence, anyone 
that’s already been infected is considered immune in our SIR model. As a result, the fraction of 
the model population that are immune at any time can be written as 
 
 ℎ = 𝑖𝑖 + 𝑟𝑟 = 1 − 𝑠𝑠 (12.32) 
 
where ℎ is the fraction immune, or the immune fraction of the model population. 
 
Once the fraction immune ℎ reaches 

 ℎ𝑝𝑝 = 1 − 𝑠𝑠𝑝𝑝 = 1 −
1
ℛ0

 (12.33) 
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then the recovery rate 𝑅𝑅𝑟𝑟 is larger than the infection rate 𝑅𝑅𝑖𝑖 and the disease will be in decline and 
eventually die out. The fraction ℎ𝑝𝑝 is the herd immunity threshold. If the fraction immune is 
greater than or equal to ℎ𝑝𝑝, i.e., if  
 ℎ ≥ ℎ𝑝𝑝 (12.34) 
 
then the disease will be in decline rather than growing as indicated by whether 𝑁𝑁𝑖𝑖(𝑡𝑡) decreases or 
increases, respectively.  
1st Note: Epidemiologists would say that the disease is being eliminated, when equation (12.34) 
is true. They’re using that word in the same sense that we did for drug elimination in CHAPTERS 
2 and 4.  
2nd Note: As of April 2020, it’s uncertain whether recovering from COVID-19 imparts 
permanent immunity to further infection by the novel SARS-CoV-2 coronavirus. 
 

 Q.12.28  Let’s test the predictions of (12.34).  
(a) Show that the SIR model parameters 𝑘𝑘𝑟𝑟 and 𝑘𝑘𝑖𝑖 can be calculated from 𝑁𝑁, 𝜏𝜏𝑖𝑖, and ℛ0 
using equations 

 𝑘𝑘𝑟𝑟 =
1
𝜏𝜏𝑖𝑖

 (12.35) 

and 
 𝑘𝑘𝑖𝑖 = 𝑘𝑘𝑟𝑟ℛ0 (12.36) 
 

and that the initial values of 𝑁𝑁𝑠𝑠 and 𝑁𝑁𝑟𝑟  in 𝑆𝑆𝑡𝑡𝑒𝑒𝑆𝑆 0 can be calculated using 
 

 𝑁𝑁𝑟𝑟new =
𝑁𝑁
ℛ0

 (12.37) 

 
 𝑁𝑁𝑟𝑟new = 𝑁𝑁 − 𝑁𝑁𝑖𝑖new − 𝑁𝑁𝑠𝑠new (12.38) 
 

(b) Write out a complete FD SIR algorithm, including unit checks, to calculate how the 
number of infectious people 𝑁𝑁𝑖𝑖 changes with time 𝑡𝑡 in days for a model population of 𝑁𝑁 =
1000 individuals using a timestep of  δ𝑡𝑡 = 100 d, a mean infectious time of 𝜏𝜏𝑖𝑖 = 16 d, a 
basic reproduction number of ℛ0 = 2.5, and an initial number infectious of 𝑁𝑁0 = 1. 
(c) By hand, calculate step 0, 1 and 2 of your finite difference algorithm and record your 
answer in the form of an FD output table. 
Hint: As usual, you should do parts (b) and (c) of this question together. It’s easier that 
way. 

 
 Q.12.29  (a) Open the preformatted spreadsheet BPM.Ch12_Herd_immunity.xlsx and 
check that it calculates your algorithm instructions exactly. The spreadsheet automatically 
plots all three of 𝑁𝑁𝑠𝑠, 𝑁𝑁𝑖𝑖 and 𝑁𝑁𝑟𝑟 and the both the new infection rate 𝑅𝑅𝑖𝑖 and the recovery rate 
𝑅𝑅𝑟𝑟 as a function of time. As always, you then need to reduce the timestep δ𝑡𝑡 to be small 
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enough and add steps so that the curves visually reach a steady state at the end of the model. 
Record your graph of 𝑁𝑁𝑠𝑠, 𝑁𝑁𝑖𝑖 and 𝑁𝑁𝑟𝑟 as a function of time. 
(b) Record your graph of the new infection rate 𝑅𝑅𝑖𝑖 and the recovery rate 𝑅𝑅𝑟𝑟 as a function 
of time. 
(c) Change the initial number infectious to the maximum possible with ℎ = ℎ𝑝𝑝, i.e., 𝑁𝑁0 =
600 for ℛ0 = 2.5. In both charts, you’ll also need to [Reset] the Axis Options > Maximum 
to [Auto] and you can change the timestep δ𝑡𝑡 to a smaller value. I chose δ𝑡𝑡 = 0.01 d. 
Record your graph of 𝑁𝑁𝑠𝑠, 𝑁𝑁𝑖𝑖 and 𝑁𝑁𝑟𝑟 as a function of time. 
(d) Record your graph of the new infection rate 𝑅𝑅𝑖𝑖 and the recovery rate 𝑅𝑅𝑟𝑟 as a function 
of time. 
(e) Briefly explain how the rather dramatic decrease in the number susceptible 𝑁𝑁𝑠𝑠 and the 
corresponding increase in the number recovered 𝑁𝑁𝑟𝑟 are consistent with our definition of 
what herd immunity means. 
 
 Q.12.30  Show that the number infectious 𝑁𝑁𝑖𝑖(𝑡𝑡) always decreases if the immune fraction 
ℎ ≥ ℎ𝑝𝑝 by showing that equation (12.18) can be written as 

 
 δ𝑁𝑁𝑖𝑖 = 𝑘𝑘𝑖𝑖𝑁𝑁𝑖𝑖𝑠𝑠 − 𝑘𝑘𝑟𝑟𝑁𝑁𝑖𝑖δ𝑡𝑡 = (𝑘𝑘𝑖𝑖𝑠𝑠 − 𝑘𝑘𝑟𝑟)𝑁𝑁𝑖𝑖δ𝑡𝑡 (12.39) 
 

and for ℎ ≥ ℎ𝑝𝑝 (or 𝑠𝑠 ≤ 𝑠𝑠𝑝𝑝), δ𝑁𝑁𝑖𝑖 is less than zero, which means that 𝑁𝑁𝑖𝑖(𝑡𝑡) always decreases 
in the SIR model independent of the current value of 𝑁𝑁𝑖𝑖. 

About what you discovered: herd immunity doesn’t mean no-one gets sick  
As you discovered in Q.12.29 herd immunity doesn’t mean that nobody gets sick. It only means 
that the number infectious 𝑁𝑁𝑖𝑖(𝑡𝑡) won’t increase with time. Unfortunately, while 𝑁𝑁𝑖𝑖(𝑡𝑡) is 
decreasing additional people will continue to get infected. 
 
However, if there is a vaccine for a disease, then equation (12.34) tells us the minimum fraction 
that must be effectively immunized (or already be immune) to provide herd immunity to the 
whole population. Herd immunity is especially important for highly contagious diseases like 
measles, particularly when infants younger than 9 months aren’t typically given the vaccine and 
hence rely on herd immunity for their wellbeing. 
 
Note: The ℛ0 for COVID-19 depends on how much social distancing is being practiced … more 
later …  

 
 Q.12.31  RESEARCH QUESTION  Pick a highly infectious disease with a high ℛ0 such as 
measles and use the SIR model to investigate the consequences of a portion of the 
population not vaccinating their children. After taking into account the effectiveness of the 
vaccine, determine what fraction of the population can decline vaccination without 
affecting herd immunity and report your conclusions. 
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Fraction uninfected after the outbreak ends 𝒔𝒔∞  
Let’s define 𝑠𝑠∞ (pronounced “𝑠𝑠 infinity”) to be the steady-state value of the susceptible fraction 𝑠𝑠 
in the SIR model at long times (when 𝑡𝑡 → ∞), i.e., after the outbreak has subsided. Because 𝑠𝑠 is 
the fraction of the model population that haven’t been infected, the value of 𝑠𝑠∞ is of great interest 
to public health officials (and the rest of us). It tells us the fraction of the susceptible people that 
survived the outbreak without being infected. Our FD implementations of the SIR model already 
make predictions for 𝑠𝑠∞. Let’s summarize what we’ve already predicted. 
 

 Q.12.32  Summarize the inputs and outputs of the SIR model by making a table of 𝑘𝑘𝑖𝑖, 𝑘𝑘𝑟𝑟, 
𝑠𝑠𝑝𝑝, ℎ𝑝𝑝, ℛ0, 𝑁𝑁𝑠𝑠(𝑡𝑡 = ∞), 𝑠𝑠∞, 1 − 𝑠𝑠∞ and the quantity  

 
 𝑦𝑦 = ℛ0(1 − 𝑠𝑠∞) + ln 𝑠𝑠∞ (12.40) 
 

You should open a fresh Excel spreadsheet and record by hand the values from the 
spreadsheets you saved for Q.12.19 and Q.12.20(a)-(d) in the form of a table.  
Hint: You can use Excel to calculate 𝑠𝑠𝑝𝑝 from 𝑘𝑘𝑖𝑖 and 𝑘𝑘𝑟𝑟 using equation (12.27), ℛ0 can be 
calculated from 𝑠𝑠𝑝𝑝 using equation (12.28), and 𝑦𝑦 can be calculated using equation (12.40), 
but you’ll need to look up the value of 𝑁𝑁𝑠𝑠(𝑡𝑡 = ∞) in the last row of your SIR model 
spreadsheets and then calculate the value of 𝑠𝑠∞ using the definition (12.9) of 𝑠𝑠. You should 
have rows in your table for each of 𝑘𝑘𝑖𝑖 ∈ {0.36, 0.18, 0.09, 0.0625, 0.045} 1/d. 
(a) Record your Excel table. You can copy and “paste as picture” into Word. 
(b) Briefly describe what you discovered about the currently mysterious quantity 𝑦𝑦 that’s 
defined by equation (12.40). 

The basic reproduction number 𝓡𝓡𝟎𝟎 
As we just discovered, 𝑠𝑠𝑝𝑝 tells us how much the curve has been flattened. Inversely, the basic 
reproduction number ℛ0 tells us the intensity of the outbreak. Made famous in the 2011 movie 
Contagion, ℛ0 is probably the single-most discussed parameter of epidemiological models 
including our simple SIR model. What you’ve probably heard is that ℛ0 is the average number of 
infections caused by a single infectious person at the beginning of the outbreak. Fig.12.14 shows 
my version of a type of schematic diagram that you may have seen elsewhere. 
 
I wasn’t focused on the parameter ℛ0 when I started working on this chapter. It didn’t occur to 
me that such a simple concept would provide such a deep insight into the rather complicated SIR 
model that we’ve been working on. I was wrong! Let’s see what you can discover …  
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Fig.12.14 Schematic diagram illustrating the meaning of ℛ0. As shown, if ℛ0 = 2, one person infects two 
additional people (on average), each of whom then each infects another two people (on average) so that 2 →
4 → 8 → 16 → 32 → 64 … which is explosive exponential growth. Note: Each infectious individual infects 
others at random times. The superimposed graph shows the total number infected predicted by the SIR 
model with ℛ0 = 2 (note this is 𝑁𝑁𝑖𝑖 + 𝑁𝑁𝑟𝑟  not 𝑁𝑁𝑖𝑖). The dotted vertical lines indicate the ensemble average 
prediction for the time of the next infection. Hence, there’s only one person per dotted line in the figure. 
Note: The diagram shows every infectious person infecting exactly two others. In reality, some infectious 
people infect zero others, while some infectious people are super-spreaders that infect many more than the 
ensemble average of ℛ0 = 2.  

 
 Q.12.33  (a) According to Fig.12.14, ℛ0 is the average total number of people infected per 
infectious person. That is, each person (on average) infects ℛ0 other people at the 
beginning of the outbreak. Now, a person can only infect someone else while they’re 
actually infectious. As we already know, the average time that they’re infectious is the 
mean infectious time 𝜏𝜏𝑖𝑖. Using the number ℛ0 [=] 1 and the time 𝜏𝜏𝑖𝑖  [=] d, write out a 
mathematical expression for the average rate [=] d−1 that an infectious person infects 
susceptible individuals in an otherwise completely susceptible model population (𝑠𝑠 ≈ 1) 
according to our SIR model. 
(b) Briefly identify the parameter in the SIR model that corresponds to your answer to part 
(a). Write the symbol of the parameter – which first appeared in the UG model – and its 
name. 
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About what you discovered: how the popular concept of 𝓡𝓡𝟎𝟎 is related to 𝒌𝒌𝒊𝒊 
Q.12.33 could have been worded “If you divide ℛ0 by 𝜏𝜏𝑖𝑖 what do you get?” – but maybe that 
would have been too easy! It took me a while to realize what you discovered in Q.12.33, i.e., that 
the popular explanation of ℛ0 precisely matches our definition of ℛ0 in equation (12.28). 
  
Using the language of math, my answer to Q.12.33 is 
 

 
ℛ0

𝜏𝜏𝑖𝑖
=
�𝑘𝑘𝑖𝑖𝑘𝑘𝑟𝑟

�

� 1
𝑘𝑘𝑟𝑟
�

=
𝑘𝑘𝑖𝑖
𝑘𝑘𝑟𝑟
𝑘𝑘𝑟𝑟 = 𝑘𝑘𝑖𝑖 (12.41) 

or 

 ℛ0 ≡ 𝑘𝑘𝑖𝑖𝜏𝜏𝑖𝑖 =
𝑘𝑘𝑖𝑖
𝑘𝑘𝑟𝑟

 (12.42) 

 
where 𝑘𝑘𝑖𝑖 is the infection rate constant (Fig.12.03) that we’ve been using since the beginning of 
this CHAPTER 12. Note, in equation (12.41) I used the definition of ℛ0 ≡ 𝑘𝑘𝑖𝑖/𝑘𝑘𝑟𝑟 (12.28) and the 
SIR model equation (12.17), which says that 𝜏𝜏𝑖𝑖 = 1/𝑘𝑘𝑟𝑟. Maybe you thought that equation (12.42) 
was obvious – and with hindsight – it is, but it took me a couple of hours to realize how the popular 
description of ℛ0 relates to our FD implementation of the SIR model. 
 
A key feature of Fig.12.14 that clarifies a conceptual problem I was having with the popular 
explanation of ℛ0 is that the infections occur at random intervals during the infectious period. 
That means that tertiary infections (purple) can occur before patient zero (red) is no longer 
infectious. My problem was that I was trying to use a “generational” description of infections 
(which I saw all over the internet) – in which all the infections only occur at the end of the 
generation. That isn’t consistent with the Poisson process of infection implied in the SIR model 
and even in the UG model of Fig.12.03 – where the probability density for an infectious person 
infecting someone else is constant – until they’re no longer infectious, i.e., transmission of the 
virus occurs throughout 𝜏𝜏𝑖𝑖 not just at the end. 
 
Interestingly, I wrote the AWYD “exponential growth has explosive consequences” (after 
Q.12.06) before I first derived equation (12.42). I now think it’s ironic that the “2.5 neutrons per 
235U nucleus” mentioned there is completely analogous to the ℛ0 = 2.5 that you’ll see sometimes 
online as an estimate for COVID-19 (as of mid-March 2020).  
 

 Q.12.34  Removing a single person from the web of infections in Fig.12.14 can produce 
quite dramatic results.  
(a) For example, count how many infections would be prevented in Fig.12.14 if the first 
purple person (the third infected overall) stayed at home and wasn’t infected because of 
social distancing? Briefly compare that number saved with the original number infected 
(21). 
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(b) Fill in the blank: Because of the initial exponential growth in the SIR model, the number 
of infections prevented by a single person staying home grows __________ over time.  
Hint: Your answer to part (b) could be turned into a public service announcement – “Social 
distance now – it exponentially decreases the spread of COVID-19.” 

 
 Q.12.35  We’re now going to reproduce the graph in Fig.12.14. Using your spreadsheet 
from Q.12.29(a), or by reopening the preformatted spreadsheet 
BPM.Ch12_Herd_immunity.xlsx, set the model population size to 𝑁𝑁 = 3.3 × 108 (the 
estimated population of the U.S. in April 2020), mean infectious time to 𝜏𝜏𝑖𝑖 = 16 d, a basic 
reproduction number of ℛ0 = 2, an initial number infectious of 𝑁𝑁0 = 1. You’ll also need 
to change the instruction for 𝑁𝑁𝑟𝑟 in 𝑆𝑆𝑡𝑡𝑒𝑒𝑆𝑆 0 to be  
 

 𝑁𝑁𝑟𝑟new = 0 (12.43) 
 

and the instruction for 𝑁𝑁𝑠𝑠 in 𝑆𝑆𝑡𝑡𝑒𝑒𝑆𝑆 0 to be equation (12.23). Then reduce the timestep δ𝑡𝑡 to 
be small enough and add steps to get to 𝑡𝑡 = 40 d. You’ll then need to add columns for the 
dimensionless time 𝑡𝑡/𝜏𝜏𝑖𝑖 and the total number infected 𝑁𝑁𝑖𝑖 + 𝑁𝑁𝑟𝑟 . Add a chart to plot the total 
number infected versus dimensionless time 𝑡𝑡/𝜏𝜏𝑖𝑖 and change the axis options to match 
Fig.12.14.  
(a) Record your graph. 
Hint: You don’t need to add the dotted vertical lines shown in Fig.12.14. 
(b) Record the time 𝑡𝑡 and dimensionless time 𝑡𝑡/𝜏𝜏𝑖𝑖 that the total number 
infected 𝑁𝑁𝑖𝑖 + 𝑁𝑁𝑟𝑟 reaches 21. 
(c) Briefly describe how you could add the vertical lines. 
Hint: We talked about how draw any shape in an Excel graph in CHAPTER 2.   

 
 Q.12.36  (a) By substituting equations (12.8) and (12.16) into equation (12.18), show that 
the SIR model predicts that 

 δ𝑖𝑖 = (𝑘𝑘𝑖𝑖𝑠𝑠 − 𝑘𝑘𝑟𝑟)𝑖𝑖δ𝑡𝑡 (12.44) 
 

where the fraction infectious 𝑖𝑖 is defined by equation (12.29). 
(b) Using FD diagram Fig.12.11, show that the FD equation for the fraction infectious is 

 
 δ𝑠𝑠 = −𝑘𝑘𝑖𝑖𝑖𝑖𝑠𝑠δ𝑡𝑡 (12.45) 
 

(c) By dividing equation (12.44) by equation (12.45), show that 
 

 δ𝑖𝑖 = �
𝑘𝑘𝑟𝑟
𝑘𝑘𝑖𝑖𝑠𝑠

− 1� δ𝑠𝑠 (12.46) 

  
(d)  CALCULUS QUESTION  Using calculus, show that the analytical solution to FD equation 
(12.46) for the final fraction susceptible 𝑠𝑠∞ in the limit that δ𝑠𝑠 → 0 is: 
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 ℛ0(1 − 𝑠𝑠∞) + ln 𝑠𝑠∞ ≈ 0 (12.47) 
 

where 𝑠𝑠 ≈ 1 at the beginning of the model and 𝑠𝑠 = 𝑠𝑠∞ as 𝑡𝑡 → ∞ at steady state. Also, 𝑖𝑖 ≈
0 at the beginning of the model and 𝑖𝑖 = 0 at steady state. ℛ0 is defined by equation (12.42). 
Your answer should use a format similar to the “Calculus can be useful” AWYD in 
CHAPTER 3. 

About what you discovered: the basic reproduction number 𝓡𝓡𝟎𝟎 
Equation (12.47) is a relationship between the basic reproduction number ℛ0 and the final 
fraction susceptible 𝑠𝑠∞ [Jones 2007]. There are two unknowns in equation (12.47), so if you 
know one, e.g.  ℛ0, then the relationship allows us to find the other, e.g., 𝑠𝑠∞ – but there’s a catch! 
– one that you might not have seen before… As far as I know, equation (12.47) can’t be solved 
using basic functions for 𝑠𝑠∞, so you can’t plug and chug to find 𝑠𝑠∞ on your calculator – even if 
you know ℛ0. Getting into the methods that can be used to solve this equation (such as the 
Newton-Raphson method – yes, it’s that Newton again!) is beyond the scope of this chapter. 
However, the good news is that we’ve already confirmed the validity of equation (12.47) with our 
FD implementation of the SIR model as shown in Table 12.1, which came from my answer to 
Q.12.32.  
 
My numbers for 𝑠𝑠∞ might be a little different from yours, because I used a spreadsheet with 32000 
rows! I also used as small a timestep as possible to minimize the finite timestep errors (CHAPTER 
3). Also, in the 𝑘𝑘𝑖𝑖 = 0.045 row of Table 12.1 I entered values of 𝑠𝑠𝑝𝑝 = 1 and ℎ𝑝𝑝 = 0 because the 
values calculated using equations (12.27) 𝑠𝑠𝑝𝑝 = 1.3889 and (12.33) ℎ𝑝𝑝 = −0.3889 don’t make 
any physical sense as both 𝑠𝑠𝑝𝑝 and ℎ𝑝𝑝 represent a fraction of the model population.  
 

Table 12.1 Inputs and outputs for the SIR model 
𝒌𝒌𝒊𝒊 (𝟏𝟏/𝐝𝐝) 𝒌𝒌𝒓𝒓 (𝟏𝟏/𝐝𝐝) 𝒔𝒔𝒑𝒑 𝒉𝒉𝒑𝒑 𝓡𝓡𝟎𝟎 𝒔𝒔∞ 𝒚𝒚  

0.36 0.0625 0.1736 0.8264 5.76 0.00320 -0.004 

0.18 0.0625 0.3472 0.65278 2.88 0.06820 -0.002 

0.09 0.0625 0.6944 0.3056 1.44 0.4571 -0.001 

0.0625 0.0625 1 0 1 0.9559 -0.001 

0.045 0.0625 1 0 0.72 0.9964 -0.001 
 

 
The values for 𝑦𝑦 in Table 12.1 are remarkably close to zero – validating that 𝑦𝑦 ≈ 0 and equation 
(12.47), particularly when you take into account the assumption used in deriving equation (12.47) 
and hence (12.40), which is that the model is starts out with 𝑠𝑠 ≈ 1 so that the fraction infectious 𝑖𝑖 
is vanishingly small, i.e., 𝑖𝑖 ≈ 0 at the beginning of the model. The value we actually used was 𝑖𝑖 =
0.001, i.e., one in a thousand, which appears to match the value of 𝑦𝑦 for the smaller values of 𝑘𝑘𝑖𝑖 
in Table 12.1.  
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Now that we’ve investigated the basic properties of the SIR model, we’re ready to investigate how 
well it does in analyzing and predicting real COVID-19 data in the US. In this WEB EDITION of 
CHAPTER 12 we’ll start doing that in the next section. Let’s see what we can discover by analyzing 
the data as it came in day-by-day in chronological order … In the condensed CHAPTER 12 of the 
published book, we’ll take a much simpler approach …  

12.4 Exponential growth  

Relating the SIR model to initial infection rate data – exponential growth 
At the beginning of the outbreak, the SIR model predicts an exponential growth that can be used 
to find some of the parameters of the model – assuming conditions for disease transmission etc. 
don’t change, e.g., by increased social distancing or testing, or seasonal variations etc. During that 
initial exponential growth period, the fraction susceptible is close to one, i.e., 𝑠𝑠 ≈ 1. As we 
discovered in Q.12.21, that’s a reasonable approximation so long as 𝑖𝑖0 ≲ 0.1 – see the “changing 
the starting point” AWYD after Q.12.21.  
 

 Q.12.37  (a) By substituting equation (12.8) and equation (12.16) into equation (12.18), 
and assuming that 𝑠𝑠 ≈ 1 during the initial phase of the outbreak, show that the change in 
the number infectious is given by 

 
 δ𝑁𝑁𝑖𝑖 = (𝑘𝑘𝑖𝑖 − 𝑘𝑘𝑟𝑟)𝑁𝑁𝑖𝑖δ𝑡𝑡 (12.48) 

or 
 δ𝑁𝑁𝑖𝑖 = 𝑘𝑘𝑔𝑔𝑁𝑁𝑖𝑖δ𝑡𝑡 (12.49) 

where  
 𝑘𝑘𝑔𝑔 = 𝑘𝑘𝑖𝑖 − 𝑘𝑘𝑟𝑟 (12.50) 
 

is the net growth rate constant for the initial phase of the outbreak. 
 
 Q.12.38  CALCULUS QUESTION  (a) Using calculus, show that the analytical solution to FD 
equation (12.49) in the limit that δ𝑡𝑡 → 0 is: 

 
 𝑁𝑁𝑖𝑖 = 𝑁𝑁0𝑒𝑒𝑘𝑘𝑔𝑔𝑡𝑡 (12.51) 
 

where 𝑁𝑁0 is the initial number infectious at the time that we’ll call 𝑡𝑡 = 0. We’re also 
assuming that the susceptible fraction is still 𝑠𝑠 ≈ 1 at that time. Your answer should use a 
format like the “Calculus can be useful” AWYD in CHAPTER 3. 
(b) By taking the derivative of equation (12.51), show that the analytical solution for 
d𝑁𝑁𝑖𝑖/d𝑡𝑡 as a function of time is 

 

 d𝑁𝑁𝑖𝑖
d𝑡𝑡

= 𝑘𝑘𝑔𝑔𝑁𝑁0𝑒𝑒𝑘𝑘𝑔𝑔𝑡𝑡 (12.52) 
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where 

 d𝑁𝑁𝑖𝑖
d𝑡𝑡

= 𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑟𝑟 = 𝑘𝑘𝑔𝑔𝑁𝑁𝑖𝑖 (12.53) 

 
 Q.12.39  DISCUSSION QUESTION  By substituting equation (12.51) into equation (12.53), show 
that the analytical solution for d𝑁𝑁𝑖𝑖/d𝑡𝑡 = 𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑟𝑟 as a function of time is equation (12.52). 
Hint: This is not a trick question. It really is that easy! 
 

We now want to see how to make the SIR model match up with the UG model, so that we can use 
the same approach that we used in Q.12.09 to successfully fit the model to the initial USA data. 
We can’t use equation (12.52) directly because as equation (12.53) states d𝑁𝑁𝑖𝑖/d𝑡𝑡 is not the same 
as 𝑅𝑅𝑖𝑖. To avoid confusion with the parameters of the SIR model and the UG model, let’s rewrite 
the UG model infection rate (12.6) as 
 𝑅𝑅𝑖𝑖 = 𝑘𝑘𝑢𝑢𝑁𝑁𝑢𝑢𝑒𝑒𝑘𝑘𝑢𝑢𝑡𝑡 (12.54) 
 
where 𝑘𝑘𝑢𝑢 is the infection rate constant for the UG model and 𝑁𝑁𝑢𝑢 is the initial number infectious 
in the UG model.  

 
 Q.12.40  DISCUSSION QUESTION  By substituting equation (12.51) into equation (12.8) with 
𝑠𝑠 ≈ 1, show that the initial new infection rate in the SIR model is given by 

 
 𝑅𝑅𝑖𝑖 = 𝑘𝑘𝑖𝑖𝑁𝑁0𝑒𝑒𝑘𝑘𝑔𝑔𝑡𝑡 (12.55) 
 
The reported data correspond to 𝑅𝑅𝑖𝑖. Hence, in order to make the two models predict the same new 
infection rate 𝑅𝑅𝑖𝑖, the new infection rates in equations (12.54) and (12.55) should be equal, so that 
 
 𝑅𝑅𝑖𝑖 = 𝑘𝑘𝑖𝑖𝑁𝑁0𝑒𝑒𝑘𝑘𝑔𝑔𝑡𝑡 = 𝑘𝑘𝑢𝑢𝑁𝑁𝑢𝑢𝑒𝑒𝑘𝑘𝑢𝑢𝑡𝑡 (12.56) 
 
The only way equation (12.56) can be true, is if the arguments of the exponential function are the 
same, i.e., 𝑘𝑘𝑔𝑔𝑡𝑡 = 𝑘𝑘𝑢𝑢𝑡𝑡, so that 
 𝑘𝑘𝑢𝑢 = 𝑘𝑘𝑔𝑔 = 𝑘𝑘𝑖𝑖 − 𝑘𝑘𝑟𝑟 (12.57) 
 
we also need the prefactors in to be the same in equation (12.56), i.e., we need  
 
 𝑘𝑘𝑖𝑖𝑁𝑁0 = 𝑘𝑘𝑢𝑢𝑁𝑁𝑢𝑢 (12.58) 

 
 Q.12.41  DISCUSSION QUESTION  (a) By substituting equation (12.57) into (12.58), solving 
for 𝑁𝑁0 and substituting in equation (12.50), show that the initial predictions of the SIR 
model will match the predictions of the UG model if we set the initial number infectious 
in the SIR model to 

 𝑁𝑁0 =
𝑘𝑘𝑖𝑖 − 𝑘𝑘𝑟𝑟
𝑘𝑘𝑖𝑖

𝑁𝑁𝑢𝑢 (12.59) 
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Hence, we can use the same procedure we used in Q.12.09 to find 𝑘𝑘𝑢𝑢 and 𝑁𝑁𝑢𝑢 using a fit to 
a simple exponential function for 𝑅𝑅𝑖𝑖 (12.54). 
(b) Show that we can then find the SIR model infection rate constant 𝑘𝑘𝑖𝑖 using  

 
 𝑘𝑘𝑖𝑖 = 𝑘𝑘𝑢𝑢 + 𝑘𝑘𝑟𝑟 (12.60) 
 

and we can then find 𝑁𝑁0 from 𝑁𝑁𝑢𝑢 using equation (12.59). 
 
Technical note: We could fit equation (12.55) directly to the published data, but that would require 
us to make a guess as to 𝜏𝜏𝑖𝑖 = 1/𝑘𝑘𝑟𝑟 before we started the fit. We’d then have to redo the fit if we 
changed 𝜏𝜏𝑖𝑖. In what follows, you’ll discover that the advantage of the above approach is that we 
can adjust the mean infectious time 𝜏𝜏𝑖𝑖 and see how it affects the model – without having to redo 
the fit to the reported data.  
. 

About what you discovered: Fitting the SIR model to initial outbreak data 
What you discovered in Q.12.41 means that if we make an estimate of the mean infectious time 
𝜏𝜏𝑖𝑖 and 𝑁𝑁, we can then see what the SIR model predicts and have it be automatically fit to the initial 
exponential growth part of the outbreak. We’ll start by using that approach to see what the 
prediction of the SIR model is using our existing fit of the UG model to the first 19 days of the 
COVID-19 outbreak in the US.  

The effect of the mean infectious time 𝝉𝝉𝒊𝒊 
The value of 𝜏𝜏𝑖𝑖 = 16 d that we’ve been using comes from the worse-case value I could find online 
in mid-March 2020. A Wolfram notebook shows a “mean recovery time” of 15.9 days (accessed 
Apr. 19, 2020) [Wolfram 2020] that I rounded up to 16 days and assumed that it was the same as 
the mean infectious time. That’s probably an overestimate if mild cases of COVID-19 stop being 
infectious earlier than more severe cases. If you look online, you’ll find all kinds of numbers that 
relate to the mean infectious time, one example that’s roughly equivalent is the “average recovery 
time” for COVID-19.  
 

 Q.12.42  Find three values that you can use as estimates for the mean infectious time for 
COVID-19. Report the most reliable numbers you found. Don’t forget to include references 
including a URL. Remember, in our model we’re most interested in the mean infectious 
time – the average time that an individual is infectious. 
1st Note: We’re not interested in the incubation time in our model. You can think of the 
incubation time as being the time it takes an individual to “jump” from box 𝑠𝑠 → 𝑖𝑖. Compare 
this with the fact that jumps in the marble game caused by random Brownian motion also 
take a finite amount of time (CHAPTER 10). 
2nd Note: The best information for our model should technically include infectious 
individuals that aren’t symptomatic – they’re the ones that are thought to be most 
responsible for the spread of the virus. What can you discover? 
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In addition to uncertainty about the value of 𝜏𝜏𝑖𝑖, there’s also the fact that known infectious people 
are usually isolated from the rest of the population. That’s why the “𝑅𝑅” in the SIR model is often 
said to stand for removed – as in removed from the number infectious, which has the same effect 
as recovered as long as they don’t interact with anyone in box 𝑠𝑠 before they stop being infectious. 
There are also individuals removed from the number infectious due to death. Hence, given the 
uncertainties, it’s important for us to understand the effect of changing 𝜏𝜏𝑖𝑖 the mean infectious time 
in our model. 
 
An additional uncertainty, particularly in the United States during April 2020, is that generally 
only people with severe symptoms are being tested for COVID-19. The easiest way to account 
for that is to reduce the model population number 𝑁𝑁 so that it only reflects individuals in the real 
population that would exhibit severe symptoms if infected. For example, if only one in ten people 
infected exhibit severe symptoms and hence get tested, then we could reduce the model population 
for the U.S. from 𝑁𝑁 = 3.3 × 108 to 𝑁𝑁 = 3.3 × 107 or 33 million. We’ll investigate the effect of 
changing this parameter 𝑁𝑁 and the parameter 𝜏𝜏𝑖𝑖 after we have a more realistic fit to the published 
data later in this SECTION 12.4 and again in SECTION 12.5.  

Fitting USA data for early March 2020 
 

 Q.12.43  Open the preformatted spreadsheet BPM.Ch12_Exponential_dragon.xlsx. Note 
that there are two main tables – the SIR model table is for the FD implementation of the 
SIR model and the USA new infections starting 2/27/2020 (ECDC) table has the new 
infections data in the US for the first 19 days reported by the ECDC that you analyzed in 
Q.12.08, Q.12.09 and Q.12.10 together with data up to day 35. The Param$ column J for 
that table has the parameters for the least-squares fit of the UG model to the day-19 data 
that you conducted in Q.12.09. However, we’re using the symbol 𝑘𝑘𝑢𝑢 for the UG infection 
rate constant and 𝑁𝑁𝑢𝑢 for the UG model initial number infected to avoid confusion with the 
SIR model parameters 𝑘𝑘𝑖𝑖 and 𝑁𝑁0 (in Param$ column A). 𝑡𝑡𝑑𝑑 is the doubling time for the UG 
model that’s calculated using equation (12.7) with 𝑘𝑘𝑖𝑖 replaced with 𝑘𝑘𝑢𝑢, i.e., 

 

 𝑡𝑡𝑑𝑑 =
ln 2
𝑘𝑘𝑢𝑢

 (12.61) 

 
The chart to the right of the USA new infections table shows the prediction of the UG model 
for the next 16 days (solid line) using the parameters 𝑘𝑘𝑢𝑢 and 𝑁𝑁𝑢𝑢, and the corresponding 
data published by the ECDC for new confirmed cases per day until April 1, 2020 as a semi-
log graph. 
(a) Run Excel’s Solver with a Set Objective of $J$7, the cell for the quality of fit 𝑄𝑄; the To: 
radio button set to  Min; and By Changing Variable Cells: set to $J$3,$J$5, the cells for 
UG model parameters 𝑘𝑘𝑢𝑢 and 𝑁𝑁𝑢𝑢.  Record your semi-log 𝑅𝑅𝑖𝑖(𝑡𝑡) graph. 
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(b) Briefly comment on how well the UG model does in predicting the next 16 days. 
Describe any systematic deviation between the model predictions and the reported data for 
those 16 days.  
(c) Make a copy of the graph and change the vertical 𝑅𝑅𝑖𝑖-axis to a linear scale, i.e., uncheck 
the box for Logarithmic scale in the Axis Options. Briefly describe what new insights this 
new perspective provides about the predictions of the UG model. 

 
 Q.12.44  The Param$ column A for the SIR model table has places for the SIR model 
parameters. I’ve already inputted 𝑁𝑁 = 3.3 × 107 (33 million) for the model population 
size, δ𝑡𝑡 = 0.015 d for the timestep and 𝜏𝜏𝑖𝑖 = 16 d for the mean infectious time. The 
recovery rate constant is calculated using 𝑘𝑘𝑟𝑟 = 1/𝜏𝜏𝑖𝑖. Fill in the blank cells in the rest of 
the Param$ column A using equations (12.60), (12.59) and (12.42).  
(a) Record the values calculated by the spreadsheet for 𝑘𝑘𝑖𝑖, 𝑁𝑁0, and ℛ0. 
(b) Briefly comment on how those values compare with the values we used in SECTION 
12.3. 
(c) Change the parameter 𝜏𝜏𝑖𝑖 from 16 days to 8 days, 4 days, 2 days and 1 day and record 
the values of for 𝜏𝜏𝑖𝑖, 𝑘𝑘𝑟𝑟, 𝑘𝑘𝑖𝑖, 𝑁𝑁0, and ℛ0 in the form of a table.  
Hint: You can use Excel to make the table. 
(d) Briefly discuss how changing the mean infectious time parameter 𝜏𝜏𝑖𝑖 changes the basic 
reproduction number ℛ0. 

 
 Q.12.45  Change the mean infectious time back to 𝜏𝜏𝑖𝑖 = 16 d, then fill in the blank cells in 
the SIR model table with your SIR algorithm from Q.12.18(c), or the model answer 
BPM.Ch12_SIR_algorithm.pdf. Once you’ve filled in the first step, you can then use the 
left-double-click copy method to populate the rest of the table. The spreadsheet should then 
automatically plot the new infection rate 𝑅𝑅𝑖𝑖(𝑡𝑡) predicted by the SIR model– one graph 
showing the first 35 days and the second showing the first 80 days.  
 
Once you’ve filled in the first step, you can then use the left-double-click copy method to 
populate the rest of the table. The spreadsheet should then automatically plot the new 
infection rate 𝑅𝑅𝑖𝑖(𝑡𝑡) predicted by the SIR model. 
 
(a) Record your 𝑅𝑅𝑖𝑖(𝑡𝑡) graph for the first 80 days. 
(b) Record the value and time of the peak infection rate per day 𝑅𝑅𝑖𝑖

peak.  
Note: Don’t freak out, the US people didn’t let this happen, but it’s important to know 
what the SIR model predicts … if there’s no social distancing at all.  
(c) Briefly describe why 𝑅𝑅𝑖𝑖

peak doesn’t occur at 𝑡𝑡𝑝𝑝, the time of the peak in 𝑁𝑁𝑖𝑖(𝑡𝑡), which we 
discussed at some length in SECTION 12.3. 
Hint: Looking at Fig.12.12 should help you formulate your answer.  
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 Q.12.46  As you discovered in Q.12.44(c) and (d) changing the value of the mean 
infectious time 𝜏𝜏𝑖𝑖 can have a dramatic effect on the basic reproduction number ℛ0. Let’s 
see if it has a similar dramatic effect on the peak infection rate. 
(a) Add two new columns to the table you made for Q.12.44(c) – one for the time of the 
peak infection rate and another for the value of 𝑅𝑅𝑖𝑖

peak. Change the mean infectious time to 
𝜏𝜏𝑖𝑖 = 8 d, 𝜏𝜏𝑖𝑖 = 4 d, 𝜏𝜏𝑖𝑖 = 2 d and 𝜏𝜏𝑖𝑖 = 1 d. While you’re doing that, pay attention to what 
happens to the fitted line in the 35-day graph of 𝑅𝑅𝑖𝑖(𝑡𝑡). Briefly describe what happens to 
the fitted line as you change 𝜏𝜏𝑖𝑖. 
(b)  Briefly explain why the fit to the initial exponential growth using the UG model doesn’t 
change as you adjust 𝜏𝜏𝑖𝑖. 
(c) Record your updated table including the time and magnitude of the peak infection rate 
𝑅𝑅𝑖𝑖
peak.  

(d) Briefly summarize what can you conclude about the sensitivity of the model predictions 
for 𝑅𝑅𝑖𝑖(𝑡𝑡) to the parameter 𝜏𝜏𝑖𝑖. 
 

Once the UG model has been fitted to the initial exponential growth, there’s not much wiggle-
room left in the SIR model (we’re assuming no change in social distancing or testing and no 
seasonal variations etc.). In Q.12.46 we investigated the effect of changing the mean infectious 
time 𝜏𝜏𝑖𝑖. There’s only one other adjustable parameter left in the SIR model – the size 𝑁𝑁 of the 
model population. Let’s see what we can discover … 
 

 Q.12.47  Change the mean infectious time back to 𝜏𝜏𝑖𝑖 = 16 d. Then investigate changing 
the size of the model population. First try 𝑁𝑁 = 3.3 × 108 the current estimate of the entire 
US population (330 million, it’s ten times the previous model population size). I 
recommend you enter that number into Excel as 3.3e8. Then try a model population size of 
𝑁𝑁 = 3.3 × 106, which would assume that only one in one hundred US residents are 
susceptible to the COVID-19 disease and would show up in the published 𝑅𝑅𝑖𝑖 data if 
infected.  
(a) Record the time and value of the peak infection rate per day 𝑅𝑅𝑖𝑖

peak for 𝑁𝑁 = 3.3 × 108 
and 𝑁𝑁 = 3.3 × 106. Report your answer as a table for 𝑁𝑁, time, and 𝑅𝑅𝑖𝑖

peak for 𝑁𝑁 ∈
{3.3 × 108, 3.3 × 107, 3.3 × 106}. 
(b) Briefly summarize what you discovered about the effect of changing 𝑁𝑁 in the SIR 
model. 
Note: We’ve already talked about this, but it’s worthwhile going over it again in this 
context. 
(c) In the absence of a vaccine for COVID-19, briefly explain if you think it’s reasonable 
to reduce the model population size for the US to a number outside the range we 
investigated in parts (a) and (b). 
(d) Change the model population size back to 𝑁𝑁 = 3.3 × 107 then make a copy of the 80-
day graph of 𝑅𝑅𝑖𝑖(𝑡𝑡) and change the vertical 𝑅𝑅𝑖𝑖-axis to a log scale, i.e., check the box for 
Logarithmic scale in the Axis Options. Then extend the SIR model table in time (you can 
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increase δ𝑡𝑡) until the new infection rate gets back to about one new case per day. Record 
your semi-log graph of graph of 𝑅𝑅𝑖𝑖(𝑡𝑡). 
(e) Briefly describe what new insights this new perspective provides about the shape of the 
peak in the SIR model 𝑅𝑅𝑖𝑖(𝑡𝑡) curve. 
Hint: Recall that a straight line on a semi-log graph indicates exponential growth if the 
slope (rise over run) is positive and exponential decay if the slope is negative. 
(f) While monitoring the semi-log plot, cycle through the mean infectious times 𝜏𝜏𝑖𝑖 ∈
{16, 8, 4, 2, 1} d and pay to attention how the inverted vee Λ of the peak shifts. Also pay 
attention to the shape of the tail of the curve. Once again you can use Undo (Ctrl+Z) and 
Redo (Ctrl+Y) to cycle between the five values of 𝜏𝜏𝑖𝑖. Briefly summarize what you 
discovered.   

About what you discovered: the exponential dragon 
As you discovered in Q.12.46 and Q.12.47, the peak in the new infection rate 𝑅𝑅𝑖𝑖(𝑡𝑡) remains with 
all the reasonable choices for 𝜏𝜏𝑖𝑖. That’s because the exponential doubling time 𝑡𝑡𝑑𝑑 (that we obtained 
from the fit to the UG model for the first 19 days) doesn’t depend on what value we choose for 
the mean infectious time parameter 𝜏𝜏𝑖𝑖. This exponential fit produces the dragon’s head peak 
predicted by the SIR model shown in Fig.12.15(a). This can be seen more mathematically in the 
semi-log graph of Fig.12.15(b) where the initial straight-line portion indicates the exponential 
growth predicted by both the UG model and the SIR model. As you discovered in Q.12.47(f), the 
shape of the inverted vee (Λ) of the dragon’s head in Fig.12.15(b) also doesn’t depend on the 𝜏𝜏𝑖𝑖 
parameter or the model population size. It only depends on the exponential growth constant 
𝑘𝑘𝑢𝑢 = 𝑘𝑘𝑔𝑔 = 𝑘𝑘𝑖𝑖 − 𝑘𝑘𝑟𝑟 (12.57), which can also be characterized by the doubling time 𝑡𝑡𝑑𝑑, in an 
analogous manner to how the drug elimination constant 𝑘𝑘𝑒𝑒 from CHAPTER 2 and CHAPTER 4 
is characterized by the drug half-life. The slope of the exponential tail of the dragon is 
determined by 𝜏𝜏𝑖𝑖 as shown more clearly in Fig.12.15(b). 
 
As you discovered in Q.12.47(a), the height of the dragon’s head is proportional to the choice of 
the model population size, e.g., if the entire US population (3.3 × 108) is included in the model 
population the peak grows to nearly 𝑅𝑅𝑖𝑖

peak ≈ 2 × 107 d−1! This can be compared with the actual 
value for the US in early April 2020 of about 𝑅𝑅𝑖𝑖 ≈ 30,000 d−1, which was reduced due to social 
distancing and mask wearing in the US. 
 
It’s important to note that the exponential dragon you discovered in Q.12.43 to Q.12.47 applies to 
an SIR model in which there’s no social distancing in effect. We’ll get to how social distancing 
has affected the data in the beginning of April 2020 after we complete Q.12.49. 
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Fig.12.15 Excel chart showing the predictions of the SIR model (Fig.12.11) when fitted to the initial 
exponential growth during the first 19 days of the outbreak. The exponential growth has fitted parameters of  
𝑘𝑘𝑢𝑢 = 0.2616 d−1 and 𝑁𝑁𝑢𝑢 = 23.23, resulting in a doubling time of 𝑡𝑡𝑑𝑑 = 2.65 d. The only adjustable parameters 
remining in the SIR model are the mean infectious time 𝜏𝜏𝑖𝑖 = 16 d and the model population size 𝑁𝑁 = 3.3 × 107. 
(a) The head of the dragon on a linear-scale plot. (b) Semi-log graph illustrating the dragon’s exponential head  
and accentuating its long exponential tail, which isn’t apparent in the linear-scale graph. Data source ECDC [2020]. 

 
Note: The idea of using a dragon analogy for explosive exponential growth was inspired by the 
expression “tickling the dragon’s tail” that’s based on a remark by Richard Feynman [Nelson 
2021] about the dangers of some ill-advised early nuclear experiments – where exponential growth 
had the potential for similar catastrophic consequences.  
 

 Q.12.48  Let’s now briefly investigate what happens if we use more of the published data 
to fit the initial exponential growth. To do that, all you’ll need to do is extend the residual 
𝑟𝑟 and residual squared 𝑟𝑟2 columns in the USA new infections table and then run Solver 
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again, but before you do that you need to clear out the SIR model table as much as possible 
by deleting the entries for 𝑅𝑅𝑖𝑖… from 𝑆𝑆𝑡𝑡𝑒𝑒𝑆𝑆 2 to the bottom of the table, but you should keep 
all the entries in the time 𝑡𝑡 (d) column. Why? Well, for every step in the Solver algorithm, 
Excel recalculates the entire spreadsheet including the tens of thousands of formulas in the 
SIR model table that aren’t even needed for finding 𝑘𝑘𝑢𝑢 and 𝑁𝑁𝑢𝑢 for the fit to the UG model. 
Once you’ve completed the LS fit using Solver you can then repopulate the SIR model table 
using the left-double-click copy method. 
Note: When you’re using Solver, you should close all other spreadsheets as their cells are 
also recalculated when Solver takes a step. 
(a) Using the procedure described above, sample different ranges of data in the LS fit to 
the UG model. Briefly summarize what you discovered.  
Hint: Don’t forget to clear out the SIR model table before you run Excel’s Solver!  
(b) Using the procedure outlined above, try fitting the UG model to the USA data for the 
first 25 days. Record the value of ℛ0 and briefly summarize what you discovered. 
(c) Record your semi-log graph of graph of 𝑅𝑅𝑖𝑖(𝑡𝑡). 

 
Before we move onto trying to model the USA data with social distancing, let’s revisit what we 
discovered about the SIR model in SECTION 12.3. 
 

 Q.12.49  Using equations (12.27), (12.33), and your extended-time SIR spreadsheet with 
the LS fit to the day-19 data – add  columns to the table you made for Q.12.46(c) for 𝑠𝑠𝑝𝑝, 
ℎ𝑝𝑝, and 𝑠𝑠∞. 
(a) Briefly summarize what you discovered. 
(b) Briefly explain how your new observations are consistent with the exponential dragon 
that occurs even when ℛ0 is reduced to close to one. 

About what you discovered: the dragon’s tail  
As you discovered in Q.12.49, the model fitted to the initial exponential growth is moderated if 
the mean infectious time 𝜏𝜏𝑖𝑖 is shorter, but the lower basic reproduction numbers that result (ℛ0 ≲
2) don’t save us from the exponential dragon. For an unrealistically low value of 𝜏𝜏𝑖𝑖 = 1 d, the 
herd immunity threshold is reduced to just under ℎ𝑝𝑝 ≈ 0.21 (21%) which sounds promising, but 
the exponential dragon still produces an unmanageable peak infection rate of three quarters of a 
million new infections per day (with 𝑁𝑁 = 3.3 × 107). However, shortening the dragon’s 
exponential tail does save about 61% of the model population from being infected – if 𝜏𝜏𝑖𝑖 = 1 d. 
Unfortunately, it seems more likely that 𝜏𝜏𝑖𝑖 is closer to a week or two for COVID-19 instead of a 
day or two. Hopefully, lowering 𝑘𝑘𝑖𝑖 through social distancing and mask wearing will make the 
predictions of the SIR model more palatable. Let’s see what we can discover …  

Fitting US data for early April 2020 – the butterfly effect 
The preformatted spreadsheet BPM.Ch12_Butterfly_effect.xlsx contains data from the ECDC for 
April 2 through April 14, 2020, which appears to be after social distancing has taken effect in the 
US. In what follows, we’re going to fit the SIR model first to data from April 2 through April 11 

http://circle4.com/biophysics
http://www.circle4.com/biophysics/xlsx/Ch12Ex/BPM.Ch12_Butterfly_effect.xlsx


Chapter 12: COVID-19 and epidemiology (web edition) Page 47 of 124  v.4.4 © Peter Hugo Nelson 2023 
 

 Biophysics and Physiological Modeling Page 47 of 124    http://circle4.com/biophysics 

and then investigate the consequences of adding only three more days to the data used to make 
the fit. We’ll then discover just how sensitive the SIR model is to the initial conditions used to fit 
the model … 
 

 Q.12.50  Open the preformatted spreadsheet BPM.Ch12_Butterfly_effect.xlsx. Note that 
there are two main tables – the SIR model table is for the FD implementation of the SIR 
model and the USA new infections table has the new infections data in the USA data from 
the ECDC for April 2 through April 14, 2020. The Param$ column J for that table has 
places for a least-squares fit of the UG model to the USA data. Once again, we’re using 
the symbol 𝑘𝑘𝑢𝑢 for the UG infection rate constant and 𝑁𝑁𝑢𝑢 for the UG model initial number 
infected to avoid confusion with the SIR model parameters 𝑘𝑘𝑖𝑖 and 𝑁𝑁0 (in Param$ column 
A). 𝑡𝑡𝑑𝑑 is the doubling time for the UG model that’s calculated using equation (12.61). The 
chart to the right of the USA new infections table shows the prediction of UG model for the 
next 13 days (solid line) and the corresponding data published by the ECDC as a semi-log 
graph. 
(a) Run Excel’s Solver with a Set Objective of $J$7, the cell for the quality of fit 𝑄𝑄; the To: 
radio button set to  Min; and By Changing Variable Cells: set to $J$3,$J$5, the cells for 
UG model parameters 𝑘𝑘𝑢𝑢 and 𝑁𝑁𝑢𝑢. Record your fitted 𝑅𝑅𝑖𝑖(𝑡𝑡) graph for the UG model. 
(b) Make a copy of the graph and change the vertical 𝑅𝑅𝑖𝑖-axis to a linear scale, i.e., uncheck 
the box for Logarithmic scale in the Axis Options. Briefly describe what new insights this 
new perspective provides about the predictions of the UG model. 
 
 Q.12.51  The Param$ column A for the SIR model table has places for the SIR model 
parameters. I’ve already inputted 𝑁𝑁 = 3.3 × 107 (33 million) for the model population 
size, δ𝑡𝑡 = 0.1 d for the timestep and 𝜏𝜏𝑖𝑖 = 16 d for the mean infectious time. The recovery 
rate constant is calculated using 𝑘𝑘𝑟𝑟 = 1/𝜏𝜏𝑖𝑖. Fill in the blank cells in the rest of the Param$ 
column using equations (12.60), (12.59) and (12.42). Then fill in the blank cells in the SIR 
model table with your SIR algorithm from Q.12.18(c), or the model answer 
BPM.Ch12_SIR_algorithm.pdf. The spreadsheet should automatically plot the new 
infection rate 𝑅𝑅𝑖𝑖(𝑡𝑡) predicted by the SIR model – one graph showing the first 14 days and 
the second showing the first 500 days.  
(a) Record your 𝑅𝑅𝑖𝑖(𝑡𝑡) graph for the first 500 days. 
(b) Change the formula for 𝑄𝑄 in the Param$ column J to include one more day, i.e., change 
the formula for 𝑄𝑄 to =SUM(Q3:Q13), then change the data used in fit series in all of the 
graphs to include the data point for April 12, 2020. Then clear out the SIR model table as 
much as possible by deleting the entries for 𝑅𝑅𝑖𝑖… from 𝑆𝑆𝑡𝑡𝑒𝑒𝑆𝑆 2 to the bottom of the table as 
we discussed in the preamble to Q.12.48. Then rerun the LS fit using Solver then repopulate 
the SIR model table using the left-double-click copy method. Record your new 𝑅𝑅𝑖𝑖(𝑡𝑡) graph 
for the first 500 days. 
(c) Use the procedure outlined in part (b) to add the data point for April 13, 2020, then 
record your new 𝑅𝑅𝑖𝑖(𝑡𝑡) graph for the first 500 days. 

http://circle4.com/biophysics
http://www.circle4.com/biophysics/xlsx/Ch12Ex/BPM.Ch12_Butterfly_effect.xlsx
http://www.circle4.com/biophysics/xlsx/Ch12Ex/BPM.Ch12_SIR_algorithm.pdf


Chapter 12: COVID-19 and epidemiology (web edition) Page 48 of 124  v.4.4 © Peter Hugo Nelson 2023 
 

 Biophysics and Physiological Modeling Page 48 of 124    http://circle4.com/biophysics 

(d) Use the procedure outlined in part (b) once more to add the data point for April 14, 
2020, then record your new 𝑅𝑅𝑖𝑖(𝑡𝑡) graph for the first 500 days. 
(e) Briefly discuss what you discovered about the sensitivity of the SIR model to the initial 
conditions of this fit to the first two weeks of April 2020. 

About what you discovered: the butterfly effect 
 

 
Fig.12.16 Excel chart showing the predictions of the SIR model (Fig.12.11) when fitted to USA new  
infection rate data in early April 2020. Solid circles show the data reported by the ECDC for April 2-14, 2020.  
The curves show the SIR model fitted to the time intervals indicated in the legend. As shown, the SIR model  
has a dramatic sensitivity to changes in the initial conditions used for the fits. It’s an example of the  
butterfly effect.  

 
Fig.12.16 summarizes your answers to Q.12.51(a)-(d) and shows the dramatic effect of adding 
just three days of published data to the fit of the SIR model. This is a straightforward example of 
the butterfly effect that spawned a whole new branch of computational modeling and physics, 
called chaos theory, or less ominously nonlinear dynamics. The idea behind the butterfly effect 
is that the equations predicting weather are so nonlinear that a butterfly flapping its wings in 
western Africa can eventually produce a category 5 hurricane that devastates southern Florida. 
Let’s see what we can discover …  

12.5 Exponential decay 

Modeling after the peak �𝑹𝑹𝒊𝒊 ≲ 𝑹𝑹𝒓𝒓� 
The fit to the USA data for April 2-14 in Fig.12.16 shows that the curve is essentially flat for the 
first few weeks. After I did this fit on April 15, it occurred to me that the approach we used in 
Section 12.4 is predicated on there being exponential growth at the beginning of the period we’re 
trying to model. The optimistic thought I had was that maybe we can make a fit assuming that the 
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infection rate is decreasing. As a result, we’ll need to change the procedure we used in SECTION 
12.4, because the math is different. 
 

 Q.12.52  (a) If the number infectious is staying constant or decreasing, then we know from 
Q.12.25 that 𝑅𝑅𝑖𝑖 ≤ 𝑅𝑅𝑟𝑟. Using equations (12.8) and (12.16), show that this implies  

 
 𝑘𝑘𝑖𝑖𝑠𝑠0 ≤ 𝑘𝑘𝑟𝑟 (12.62) 
 

where 𝑠𝑠0 is the susceptible fraction at the beginning of the period after social distancing 
has taken effect, i.e., the value of the susceptible fraction 𝑠𝑠 on April 3, 2020. 
(b) By substituting equation (12.8) and equation (12.16) into equation (12.18), with 𝑠𝑠 = 𝑠𝑠0 
show that  

 δ𝑁𝑁𝑖𝑖 = −(𝑘𝑘𝑟𝑟 − 𝑘𝑘𝑖𝑖𝑠𝑠0)𝑁𝑁𝑖𝑖δ𝑡𝑡 (12.63) 
or  

 δ𝑁𝑁𝑖𝑖 = −𝑘𝑘𝑑𝑑𝑁𝑁𝑖𝑖δ𝑡𝑡 (12.64) 
where 

 𝑘𝑘𝑑𝑑 = 𝑘𝑘𝑟𝑟 − 𝑘𝑘𝑖𝑖𝑠𝑠0 (12.65) 
 

is the initial decay rate constant for the number infectious, which is a positive quantity 
when 𝑁𝑁𝑖𝑖 and 𝑅𝑅𝑖𝑖 = 𝑘𝑘𝑖𝑖𝑁𝑁𝑖𝑖𝑠𝑠 (12.8) are decreasing. 

 
 Q.12.53  CALCULUS QUESTION  (a) Using calculus, show that the analytical solution to FD 
equation (12.63) in the limit that δ𝑡𝑡 → 0 is an exponential decay of the form 

 
 𝑁𝑁𝑖𝑖 = 𝑁𝑁0𝑒𝑒−𝑘𝑘𝑑𝑑𝑡𝑡 (12.66) 

 
where 𝑁𝑁0 is the initial number infectious at time 𝑡𝑡 = 0 for the social distancing period of 
the epidemic, i.e., 𝑡𝑡 = 0 is the first time that 𝑘𝑘𝑑𝑑 (or ℛ0) has stabilized after social distancing 
has taken effect (with the susceptible fraction approximately constant at  𝑠𝑠 ≈ 𝑠𝑠0). Your 
answer should use a format similar to the “Calculus can be useful” AWYD in CHAPTER 3. 
Note: Equation (12.66) is mathematically equivalent to equation (2.16) for the exponential 
decay predicted in our model of drug elimination (CHAPTER 2). 
 
 Q.12.54  (a) By substituting the exponential decay equation (12.66) into equation (12.8), 
show that the analytical solution for the new infection rate 𝑅𝑅𝑖𝑖(𝑡𝑡) during the initial social-
distancing period, assuming 𝑠𝑠 ≈ 𝑠𝑠0, is an exponential decay of the form 

 
 𝑅𝑅𝑖𝑖 ≈ 𝑘𝑘𝑖𝑖𝑁𝑁0𝑠𝑠0𝑒𝑒−𝑘𝑘𝑑𝑑𝑡𝑡 (12.67) 

or 
 𝑅𝑅𝑖𝑖 ≈ 𝐴𝐴0𝑒𝑒−𝑘𝑘𝑑𝑑𝑡𝑡 (12.68) 

where  
 𝐴𝐴0 = 𝑘𝑘𝑖𝑖𝑁𝑁0𝑠𝑠0 (12.69) 
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(b) Exponential decay (ED) equation (12.68) includes an implicit assumption about how 
social distancing remains in place. Briefly explain what it is in words and using math. 
(c) Using equation (12.66) and the definition of half-life (that 𝑁𝑁𝑖𝑖 = 𝑁𝑁0/2, when 𝑡𝑡 = 𝑡𝑡½)  
show that  

 𝑡𝑡½ =
ln 2
𝑘𝑘𝑑𝑑

 (12.70) 

 
which is the same as equation (4.22) that we first derived for drug elimination and 
radioactive decay in CHAPTER 4. 

About what you discovered: exponential decay – the dragon’s tail 
A consequence of equation (12.68) is that after social distancing has taken effect, we can fit the 
first few weeks of data to an exponential decay of the same form that we used in CHAPTERS 2, 3, 
4, 9 and 11. The exponential decay predicted by equation (12.68) is much easier to fit than 
exponential growth. The equation is not as “stiff” as exponential growth – so long as the infection 
rate 𝑅𝑅𝑖𝑖 is decreasing (on average). If social distancing is relaxed enough that 𝑅𝑅𝑖𝑖 starts to increase 
again on average (by even a small percentage) then the butterfly can tickle the dragon’s nose and 
our predictions become much more uncertain once again. As you’ll discover, the USA data for 
April and early May are perilously close to the boundary between exponential decay and 
exponential growth. We’ll return to this possibility in SECTION 12.7 when we discuss the 
consequences of lifting social distancing measures prematurely. But before we do that, let’s see 
what our SIR model predicts based on data for the first two weeks of April 2020. 
 
As an aside, it’s worth noting that while the approach taken above seems straightforward, it took 
a while for me to realize that it’s important to allow for the possibility that 𝑠𝑠0 ≉ 1. This surprised 
me because as you’ll discover, the fitted parameter 𝑠𝑠0 is usually greater than 𝑠𝑠0 = 0.99, which I 
would have thought would be close enough to 𝑠𝑠0 = 1. But it appears that this situation is similar 
to what we discussed in the “misconceptions can be subtle” AWYD after Q.5.36 in CHAPTER 5. 
However, as you’ll discover in Q.12.55, the calculated parameter 𝑠𝑠0 is completely determined by 
the ED model parameters 𝐴𝐴0 and 𝑘𝑘𝑑𝑑, so that including it in the model doesn’t actually add an 
additional adjustable parameter. As we’ve discussed before, including only a minimum of 
adjustable parameters is important from a modeling perspective.  
 

 Q.12.55  DISCUSSION QUESTION  (a) By solving equation (12.65) for 𝑘𝑘𝑖𝑖, show that the 
infection rate constant for the SIR model can be calculated from a least-squares fit to the 
exponential decay equation (12.66) using 

 

 𝑘𝑘𝑖𝑖 =
𝑘𝑘𝑟𝑟 − 𝑘𝑘𝑑𝑑
𝑠𝑠0

 (12.71) 
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(b) Then, by combining equations (12.69) and (12.71), show that we can calculate the initial 
number infectious from the ED parameters 𝐴𝐴0 and 𝑘𝑘𝑑𝑑 using  

 

 𝑁𝑁0 =
𝐴𝐴0

𝑘𝑘𝑟𝑟 − 𝑘𝑘𝑑𝑑
 (12.72) 

 
(c) Finally, using the definition of 𝑠𝑠 (12.9) and the bookkeeping equation (12.15) with 𝑁𝑁𝑟𝑟 =
0, show that we can then calculate the initial faction susceptible during the social distancing 
period using  

 𝑠𝑠0 =
𝑁𝑁 − 𝑁𝑁0
𝑁𝑁

 (12.73) 

 
 Q.12.56  Open the preformatted spreadsheet BPM.Ch12_Cloudy_with_dragons.xlsx. It 
has the same data that we first analyzed in Q.12.50, but now the USA new infections table 
has been extended to Memorial Day (May 25, 2020). The Param$ column J for that table 
has places for the ED model parameters 𝑘𝑘𝑑𝑑, for the exponential decay rate constant and 𝐴𝐴0 
for the prefactor in the ED equation (12.68). 𝑡𝑡½ is the half life for the ED model that’s 
calculated using equation (12.70). The chart to the right of the USA new infections table 
shows the prediction of ED model for the next 40 days (solid line) and the corresponding 
data published by the ECDC as a semi-log graph. The parameter 𝑄𝑄 is calculated using 
equation (6.11) using =SUM(Q3:Q14) as the sum is of the 𝑟𝑟2 values from April 3, 2020 to 
April 14, 2020, inclusive.  
Note: I dropped the data point for April 2, 2020 because it seemed to be the last day in the 
transition period between the initial exponential growth and the period after social 
distancing had taken effect.  RESEARCH QUESTION  After you’ve completed Q.12.61, 
investigate and report on the validity of that assertion. 
(a) Run Excel’s Solver with a Set Objective of $J$7, the cell for the quality of fit 𝑄𝑄; the To: 
radio button set to  Min; and By Changing Variable Cells: set to $J$3,$J$5, the cells for 
ED model parameters 𝑘𝑘𝑑𝑑 and 𝐴𝐴0. Record your fitted 𝑅𝑅𝑖𝑖(𝑡𝑡) graph for the ED model. 
(b) Make a copy of the graph and change the vertical 𝑅𝑅𝑖𝑖-axis to a linear scale, i.e., uncheck 
the box for Logarithmic scale in the Axis Options. Briefly describe what new insights this 
new perspective provides about the predictions of the ED model (12.68). 
(c) Add a linear trendline based on the data used in fit series to the linear-scale graph you 
just made. Then, extend the trendline out to day 52 using Format Trendline… > Trendline 
Options > Forecast > Forward [41] periods. (You’ll also need to increase the width of the 
legend box to see all the series.) Briefly comment on the differences between the linear 
regression trendline and the ED model prediction based on the same data used in fit. Do 
you think the differences are significant? What can you conclude about the equivalency 
between the ED model and the linear trendline based on the data used in fit.  
(d) Add another linear trendline to the linear-scale graph based on the USA data series. 
Record your graph and briefly comment on the differences between the linear regression 
trendline and the ED model prediction based on the data used in fit. Do you think the 
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differences are significant? What can you conclude about the equivalency between the ED 
model and the linear trendline fitted to all of the USA data.  
(e)  CALCULUS DISCUSSION QUESTION  Using the exponential series (9.25) (𝑒𝑒𝑥𝑥 ≈ 1 + 𝑥𝑥 + ⋯) 
show that the ED model (12.68) can be approximated by the linear function  
 

 𝑅𝑅𝑖𝑖 ≈ 𝐴𝐴0 − 𝐴𝐴0𝑘𝑘𝑑𝑑𝑡𝑡 (12.74) 
 

for 𝑘𝑘𝑑𝑑𝑡𝑡 ≪ 1. Hence, if needed, we can use Excel’s linear trendline and/or Excel’s slope 
and intercept functions to estimate 𝐴𝐴0 and 𝑘𝑘𝑑𝑑 so long as 𝑘𝑘𝑑𝑑𝑡𝑡 ≪ 1. I have not used this 
approximation, but it might prove useful for analyzing larger data sets rapidly in a full-
blown programming environment like Python, R, MATLAB, Mathematica, SPSS etc. 
 
 Q.12.57  DISCUSSION QUESTION  The Param$ column A for the SIR model table has places 
for the SIR model parameters. I’ve already inputted 𝑁𝑁 = 3.3 × 107 (33 million) for the 
model population size, δ𝑡𝑡 = 0.1 d for the timestep and 𝜏𝜏𝑖𝑖 = 16 d for the mean infectious 
time. The recovery rate constant is calculated using 𝑘𝑘𝑟𝑟 = 1/𝜏𝜏𝑖𝑖. Fill in the blank cells in the 
rest of the Param$ column using equations (12.72), (12.73), (12.71) and (12.42). Then fill 
in the blank cells in the SIR model table with your SIR algorithm from Q.12.18(c), or the 
model answer BPM.Ch12_SIR_algorithm.pdf. Then populate the SIR model table using 
the left-double-click copy method. The spreadsheet should automatically plot the new 
infection rate 𝑅𝑅𝑖𝑖(𝑡𝑡) predicted by the SIR model – one graph showing the first 52 days and 
the second graph showing the first 600 days after social distancing took effect.  
Note: I know you’ve done this before, but it’s a good way for us to remind ourselves about 
how the SIR model is implemented in the spreadsheet.  
(a) Record your 𝑅𝑅𝑖𝑖(𝑡𝑡) graph for the first 52 days after social distancing took effect. 
(b) Briefly comment on whether the SIR model does a better job than the ED model at 
predicting the USA data from day 12 (4/15/2020) onward. 
(c) Change the mean infectious time to  𝜏𝜏𝑖𝑖 ∈ {8, 4, 2,1} d. While you’re doing that, pay 
attention to what happens to the prediction of the SIR model in the 𝑅𝑅𝑖𝑖(𝑡𝑡) graph for the first 
52 days. Once again you can use Undo (Ctrl+Z) and Redo (Ctrl+Y) to cycle between the 
five values of 𝜏𝜏𝑖𝑖. Briefly summarize what happens to the SIR prediction as you change 𝜏𝜏𝑖𝑖. 
 
 Q.12.58  DISCUSSION QUESTION  (a) With 𝜏𝜏𝑖𝑖 = 16 d, add a linear trendline based on the USA 
data series to the graph for the first 52 days. (You’ll also need to increase the width of the 
legend box to see all the series.) Briefly comment on the differences between the linear 
regression trendline and the SIR model prediction based on the data used in fit. Do you 
think the differences are significant? Which fit matches the USA data better? Based on this 
comparison how does the SIR model with 𝑁𝑁 = 3.3 × 107 compare with the ED model.  
Note: As we discussed in CHAPTER 6, the low value of 𝑅𝑅2 for the linear (LR) trendline 
doesn’t mean the fit is bad – just that the slope is small compared with the scatter in the 
data. 
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(b) With 𝜏𝜏𝑖𝑖 = 16 d, try changing the value of the model population size. 𝑁𝑁 = 3.3 × 107 
corresponds to 1 in 10 of the total US population (3.3 × 108), then 𝑁𝑁 ∈ {6.6 × 107, 8.25 ×
107, 1.1 × 108, 1.65 × 108, and 3.3 × 108} that correspond to 1 in 5; 1 in 4; 1 in 3; 1 in 2; 
and 1 to 1, respectively. While you’re doing that pay attention to how the SIR model curve 
changes and, in particular, pay attention to how it matches up with the linear trendline fitted 
to the data, recalling that our ED fit is to the first 12 data points. Once again, you can use 
Undo (Ctrl+Z) and Redo (Ctrl+Y) to cycle between the values of 𝑁𝑁 that you chose. Briefly 
summarize what happens to the SIR prediction as you change 𝑁𝑁. 
(c) Record your graph for the first 600 days with 𝜏𝜏𝑖𝑖 = 16 d, and 𝑁𝑁 = 8.25 × 107 or ¼ of 
the total US population.  
(d) Comment on the significance of the closeness of the predictions of the SIR model to the 
LR trendline fit to all the data in the graph of the first 52 days.  
Note: The LR trendline is fit to all of the data after the fact, whereas the SIR model is a 
prediction based on only on data from the first two weeks of April 2020.  
(e) Briefly compare your prediction in Q.12.58(c) with the last curve in the butterfly effect 
Fig.12.16. Are they qualitatively similar? Are they quantitatively similar?  

About what you discovered: outlook based on early April 
In Q.12.56 you discovered that when we fit the ED model to USA data for April 3 to April 14, 
2020, it does an amazingly good job of predicting the future of the pandemic in the US for the 
next 41 days until Memorial Day. The closeness of the ED prediction to the linear (LR) trendline 
fit to all of the reported data from April 3 to May 25, 2020, allows us to make that conclusion 
because the LR trendline is a least-squares fit to all of the data and it matches the ED prediction 
throughout the entire social distancing period shown in the graph. The closeness of the ED model 
to the LR trendline for the first 20 days confirms that the ED model is working as advertised as a 
good way to fit the data during the April 3 to April 14, 2020 period. However, we should note that 
the ED model is not a complete epidemiological model, it’s merely a convenient approximation 
to the SIR model that can be used to estimate two of the SIR models parameters.  
 
Fig.12.17 shows my answer to Q.12.58(c). I changed the time units into weeks to better illustrate 
the timescale of the model predictions and I extended the linear trendline to intersect the time axis 
in panel (b). The closeness of the SIR model to the linear trendline shows that the SIR model 
successfully predicts what happened in the six weeks following the fit while social distancing was 
being maintained. With all the diversity of what's happening in different US states (most notably 
NY), it’s quite amazing to me that the data for the country – as a whole – is still falling on a 
straight line.  
 
In your answer to Q.12.57(b) you noted that the SIR predicts slightly lower values than the ED 
model and the actual USA data from day 12 (4/15/2020) onward when 𝑁𝑁 = 3.3 × 107. As the 
model population was increased, the SIR model matched the ED model and the USA data better. 
Reducing the mean infectious time from 𝜏𝜏𝑖𝑖 = 16 d to 𝜏𝜏𝑖𝑖 = 8 d made the SIR model slightly lower 
and further decreasing it to 𝜏𝜏𝑖𝑖 = 4 d made the fit significantly worse. 
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Fig.12.17 Excel charts showing the predictions of the SIR model (Fig.12.11) when fitted to USA new  
infection rate data from April 3 to April 14, 2020 inclusive (filled circles – data used in fit). The open circles  
show all the USA data reported by the ECDC from April 3 to May 25, 2020, 2020 (Memorial Day). The curve  
is the prediction of the SIR model fitted to the April 3 to April 14, 2020 data using the ED model with  
𝑁𝑁0 = 569,000 and 𝑘𝑘𝑖𝑖 = 0.0560 d−1, a model population size of 𝑁𝑁 = 8.25 × 107 and a mean infectious time of  
𝜏𝜏𝑖𝑖 = 16 d. The dotted line is a linear (LR) trendline fit to all the USA data from April 3 to May 25, 2020,  
(Memorial Day). 

 
Fig.12.17 shows my answer to Q.12.58(c). I changed the time units into weeks to better illustrate 
the timescale of the model predictions and I extended the linear trendline to intersect the time axis 
in panel (b). The closeness of the SIR model to the linear trendline shows that the SIR model 
successfully predicts what happened in the six weeks following the fit while social distancing was 
being maintained. With all the diversity of what's happening in different US states (most notably 
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NY), it’s quite amazing to me that the data for the country – as a whole – is still falling on a 
straight line.  
 
In your answer to Q.12.57(b) you noted that the SIR predicts slightly lower values than the ED 
model and the actual USA data from day 12 (4/15/2020) onward when 𝑁𝑁 = 3.3 × 107. As the 
model population was increased, the SIR model matched the ED model and the USA data better. 
Reducing the mean infectious time from 𝜏𝜏𝑖𝑖 = 16 d to 𝜏𝜏𝑖𝑖 = 8 d made the SIR model slightly lower 
and further decreasing it to 𝜏𝜏𝑖𝑖 = 4 d made the fit significantly worse. 
 
In Q.12.58, you also discovered that exponential decay is much easier to fit to real data than 
exponential growth. The general shape of the predictions of the model – once fitted using the ED 
model – is relatively robust with respect to changes in the two remaining parameters with the 
shape of the curves staying the same and with no dramatic changes in qualitative behavior like the 
butterfly effect shown in Fig.12.16. As you discovered in Q.12.18(e), the ED model does a better 
job of fitting the USA data than the UG model but the shapes of the two curves are similar. 
 
As shown in Fig.12.17(b) the fitted SIR model makes a rather depressing prediction for how the 
infection rate declines if all the parameters are unaffected by seasonal variations, changes in social 
distancing or testing, or any medical breakthroughs etc. Unfortunately (from a modeling 
perspective), we’ll have to wait another 50 days to see if the model’s predicted differences from 
a linear decline are correct (assuming the model parameters 𝑘𝑘𝑖𝑖 etc. stay the same).  

 
 Q.12.59  DISCUSSION QUESTION  (a) With the model population set to 𝑁𝑁 = 8.25 × 107 and 
𝜏𝜏𝑖𝑖 = 16 d, change the formula for 𝑄𝑄 in the Param$ column J to sample different ranges of 
data to get an idea of how the choice affects the predictions of the model, i.e., change the 
formula for 𝑄𝑄 from =SUM(Q3:Q14), then change the data used in fit series in all of the 
graphs to include the data that you selected to fit. E.g. you can fit the ED model to days 0-
18 using =SUM(Q3:Q21). Then clear out the SIR model table as much as possible by deleting 
the entries for 𝑅𝑅𝑖𝑖… from 𝑆𝑆𝑡𝑡𝑒𝑒𝑆𝑆 2 to the bottom of the table as we discussed in the preamble 
to Q.12.48. Then rerun the LS fit using Solver. Then repopulate the SIR model table using 
the left-double-click copy method. Try changing 𝑁𝑁 and 𝜏𝜏𝑖𝑖 to reasonable values to see how 
that affects the SIR model. Briefly discuss what you discovered about fitting the SIR model 
to the initial conditions using the exponential decay (ED) model.  
Reminder: When you’re using Solver, you can save time by closing all other spreadsheets 
as their cells are also recalculated when Solver takes a step. 
(b) With the model population set to 𝑁𝑁 = 8.25 × 107 and 𝜏𝜏𝑖𝑖 = 16 d, change the formula 
for 𝑄𝑄 in the Param$ column J to include all the data in the USA new infections table, i.e., 
change the formula for 𝑄𝑄 to =SUM(Q3:Q55), then delete the data used in fit series in all of 
the graphs as we’re fitting all the USA data. Then clear out the SIR model table as much as 
possible by deleting the entries for 𝑅𝑅𝑖𝑖… from 𝑆𝑆𝑡𝑡𝑒𝑒𝑆𝑆 2 to the bottom of the table as we 
discussed in the preamble to Q.12.48. Then rerun the LS fit using Solver then repopulate 
the SIR model table using the left-double-click copy method. Add a linear trendline to the 
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600-day graph and Forecast it forward until it intersects the time axis. Set 𝜏𝜏𝑖𝑖 = 16 d, 
change the chart title to something appropriate and record your new 𝑅𝑅𝑖𝑖(𝑡𝑡) graph with both 
the SIR model and the LR trendline for the first 600 days after social distancing took effect 
and compare your new graph with Fig.12.17(b). 
(c) Change the mean infectious time to 𝜏𝜏𝑖𝑖 = 8 d and the model population size to 𝑁𝑁 =
1.65 × 108. Compare your new graph with Fig.12.17(b) and to your answer for 
Q.12.59(b). 

About what you discovered: fit to US data from April 3 to May 25, 2020 
Your answers to Q.12.58(b) and Q.12.58(c) are both very similar to Fig.12.17(b). Indicating once 
again that the fit to the SIR model doesn’t depend very strongly on the value chosen for 𝜏𝜏𝑖𝑖 or 𝑁𝑁 if 
the ED fit is used and the other parameter is adjusted to compensate. Personally, I prefer the fit in 
Q.12.59(c) because the fitted model parameters seem more reasonable. The model parameter 𝜏𝜏𝑖𝑖 =
8 d matches the value reported for the SIR model fitted to Chinese data in a recent Science article 
by Maier and Brockmann [2020] and the value of 𝑁𝑁0 = 275500, seems like a reasonable ballpark 
estimate for the number infectious in the US on April 3, 2020. The model population size 𝑁𝑁 =
1.65 × 108 corresponds to ½ of the total US population indicating that half of those infected are 
symptomatic and tested. Interestingly, the value of ℛ0 = 6.2 reported by Maier and Brockmann 
for China compares favorably with the value of ℛ0 = 5.8 that we reported in Table 12.1.  
 

 Q.12.60  DISCUSSION QUESTION  In equation (12.73) we assumed that 𝑁𝑁𝑟𝑟 = 0. Let’s 
investigate the consequences of that assumption by sampling reasonable starting values for 
the number recovered on April 3, 2020. Save a fresh copy of your spreadsheet for 
Q.12.59(c) and change model by adjusting formula for the initial susceptible fraction to 
𝑠𝑠0 = 𝑁𝑁𝑠𝑠0/𝑁𝑁 where 𝑁𝑁𝑠𝑠0 is the value of 𝑁𝑁𝑠𝑠 in 𝑠𝑠𝑡𝑡𝑒𝑒𝑆𝑆 0 of the SIR model. Then sample 
reasonable values of 𝑁𝑁𝑟𝑟0, then try some unreasonably large values.  
(a) Briefly report on what you discovered about the effect on the fitted SIR model of 
changing 𝑁𝑁𝑟𝑟0 to reasonable nonzero values on April 3, 2020. 
(b) Briefly explain why the values of 𝑘𝑘𝑖𝑖 and ℛ0 automatically adjust when you change 𝑁𝑁𝑟𝑟0. 
(c) How big does 𝑁𝑁𝑟𝑟0 have to be to make a visual difference to the SIR model? Briefly 
comment on whether that’s a reasonable value for the US on April 3, 2020. 
(d) With 𝑁𝑁𝑟𝑟0 = 0, change the timestep in the SIR model from δ𝑡𝑡 = 0.1 d to δ𝑡𝑡 = 1 d. 
Briefly describe the effect on the fitted SIR model.   

LS fit to the SIR model 
As you discovered in Q.12.60(d), changing the timestep to δ𝑡𝑡 = 1 d has an effect on the fitted 
SIR model that’s barely noticeable. As a result, I think it’s reasonable for us to consider using a 
timestep of δ𝑡𝑡 = 1 d after social distancing has taken effect on April 3, 2020. The advantage of 
doing so is that the SIR timestep then matches up with the data reported by the ECDC. That in 
turn allows us to use Excel’s Solver to do a least-squares fit of the full SIR model to the ECDC 
data in a straightforward manner. 
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 Q.12.61  DISCUSSION QUESTION  Open the spreadsheet BPM.Ch12_LS_fit_to_SIR.xlsx. It 
has the same ECDC data that we’ve been analyzing in the column headed USA (1/d), but 
it’s now located in the same table as the SIR model. The residuals 𝑟𝑟 column should be 
calculated using equation (4.12), i.e., the first entry in cell K4 should end up being =J4-E4. 
The 𝑟𝑟2 column should be calculated by squaring the residuals, and the quality of fit 𝑄𝑄 
should be calculated using equation (6.11), which should end up being =SUM(L4:L55).  
(a) Make sure that 𝜏𝜏𝑖𝑖 = 16 d then run Excel’s Solver with a Set Objective of $A$19, the 
cell for the quality of fit 𝑄𝑄; the To: radio button set to  Min; and By Changing Variable 
Cells: set to $A$3, the cell for the model population size. Make a table to record 𝜏𝜏𝑖𝑖, 𝑁𝑁 and 
𝑄𝑄 and then run Solver with 𝜏𝜏𝑖𝑖 ∈ {16, 8, 4, 2} d. Record your results in the form of a table. 
(b) Briefly comment on the validity of the fitted values of 𝑁𝑁 that you obtained. 
(c) Set 𝑁𝑁 = 3.3 × 108 and then run Excel’s Solver with a Set Objective of $A$19, the cell 
for the quality of fit 𝑄𝑄; the To: radio button set to  Min; and By Changing Variable Cells: 
set to $A$7, the cell for the mean infectious time. Make a table to record 𝑁𝑁, 𝜏𝜏𝑖𝑖 and 𝑄𝑄 then 
run Solver with 𝑁𝑁 ∈ {3.3 × 108, 1.65 × 108, 1.1 × 108}. Record your results in the form 
of a table. 
(d) Briefly comment on the validity of the fitted values of 𝑁𝑁 that you obtained. 
(e) Now use Solver to find the “best-fit” values of both 𝑁𝑁 and 𝜏𝜏𝑖𝑖 simultaneously. You’ll 
need to change By Changing Variable Cells: to $A$3,A$7. Run Solver to find the “best-fit” 
values of 𝑁𝑁 and 𝜏𝜏𝑖𝑖. Briefly discuss your results and their significance. Try various starting 
points to determine the uniqueness of your “best-fit” parameters.  
Note: If you get an error while running Solver, try a different starting point. Recall the 
“puddles in the parking lot” that we talked about in Chapter 6. Errors can occur when a 
puddle drains into a zero-value drain.  
(f) Now use Solver to find the “best-fit” values of 𝑁𝑁, 𝜏𝜏𝑖𝑖 and 𝑘𝑘𝑖𝑖 simultaneously. You’ll need 
to change By Changing Variable Cells: to $A$3,A$7,$A$15. Run Solver to find the “best-
fit” values of 𝑁𝑁, 𝜏𝜏𝑖𝑖 and 𝑘𝑘𝑖𝑖. Briefly discuss your results and their significance. Try various 
starting points to determine the uniqueness of your “best-fit” parameters. 
(g) Finally, use Solver to find the “best-fit” values of 𝑁𝑁, 𝜏𝜏𝑖𝑖, 𝑁𝑁0 and 𝑘𝑘𝑖𝑖 simultaneously. 
You’ll need to change By Changing Variable Cells: to $A$3,A$7,$A$11,$A$15. Run Solver 
to find the “best-fit” values of 𝑁𝑁, 𝜏𝜏𝑖𝑖, 𝑁𝑁0 and 𝑘𝑘𝑖𝑖. Briefly discuss your results and their 
significance. Try various starting points to determine the uniqueness of your “best-fit” 
parameters. 

About what you discovered: USA data underspecifies SIR parameters 
In questions Q.12.57 and Q.12.58 we discovered that we could fit the SIR model equally well 
with (𝜏𝜏𝑖𝑖 ,𝑁𝑁) = (16 d, 8.25 × 107) or (𝜏𝜏𝑖𝑖 ,𝑁𝑁) = (8 d, 1.65 × 108), i.e., that changing one of 
(𝜏𝜏𝑖𝑖 ,𝑁𝑁) could be compensated for by changing the other accordingly. In questions Q.12.61(a) and 
Q.12.61(c) we discovered that selecting a value of one of (𝜏𝜏𝑖𝑖 ,𝑁𝑁) allowed us to find the least-
squares “best-fit” value of the other parameter. Because of those fits, it’s tempting to conclude 
that the best-fit value of the model population is 𝑁𝑁 ≈ 3.3 × 108 and that the best-fit value of the 
mean infectious time is 𝜏𝜏𝑖𝑖 ≈ 8 d. Indeed, they do seem like reasonable values, but as you already 
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discovered, the improvement in the fit is only minimal as you saw in the fit to the first 52 days 
and by noting that the quality of fit 𝑄𝑄 doesn’t change much.  
 
What you discovered in parts (e), (f) and (g) of Q.12.61 is that the USA data underspecifies the 
SIR model parameters. Alternatively, we can say that the SIR model overspecifies the USA data 
from April 3 to May 25. The easiest way to see what that means is to realize that the ED model 
can fit the data almost as well with only two adjustable parameters. The SIR model has four 
adjustable parameters (5 if you count 𝑁𝑁𝑟𝑟0). Hence, it’s simply not possible to use the USA data 
from April 3 to May 25 to accurately determine the “best-fit” values of all those parameters. The 
USA data simply don’t have enough “structure” to them as they are basically a straight line with 
random noise. That’s why you got crazy values for the parameters in parts (f) and (g). You should 
also have noticed that 𝑄𝑄 hardly changed at all during the fit, which means that the parameters are 
not well-determined by the data that we’re fitting to the model.  
 
This type of situation is much more common than you might think. In my research into modeling 
ion channel permeation (e.g. [Nelson 2011]), I frequently ran into the issue of published data being 
fitted to models with too many adjustable parameters.  

 
 Q.12.62  RESEARCH QUESTION  Model data from a US state or another country during the 
time of social distancing, e.g. the tail of the 𝑅𝑅𝑖𝑖(𝑡𝑡) curve in New York State. 

Modeling the death rate 
The SIR model doesn’t explicitly model the death of infected individuals. However, it seems 
reasonable to assume that (at least initially) a fixed fraction 𝑚𝑚𝑟𝑟 of people who become infectious 
will eventually die of the disease and that on average they die 𝑡𝑡𝑚𝑚 days after their infection was 
confirmed and reported. Hence, we’ll assume that the mortality rate 𝑅𝑅𝑚𝑚 is related to the infection 
rate 𝑅𝑅𝑖𝑖 by 
 𝑅𝑅𝑚𝑚(𝑡𝑡) = 𝑚𝑚𝑟𝑟𝑅𝑅𝑖𝑖(𝑡𝑡 − 𝑡𝑡𝑚𝑚) (12.75) 
 
where 𝑚𝑚𝑟𝑟 is the apparent mortality ratio (a scaling factor) and 𝑡𝑡𝑚𝑚 is the mortality delay time 
(a time shift). 
 
We’re now going to find the best-fit values of 𝑚𝑚𝑟𝑟 using Excel’s Solver and find the best-fit value 
of 𝑡𝑡𝑚𝑚 using a Progress table – like we did in CHAPTER 6 for O2 binding to myoglobin. There are 
automatic methods for finding 𝑡𝑡𝑚𝑚, but the progress table method is very straightforward. Open 
the preformatted spreadsheet BPM.Ch12_Infection_and_death.xlsx to see how it works. It has the 
same ECDC data up to Memorial Day 2020 that we’ve been analyzing. It also includes the 
confirmed mortality rate data (confirmed deaths per day) reported by the ECDC in the column 
headed Rm (1/d). The column headed e (1/d) is the value expected using equation (12.75) with 
𝑡𝑡𝑚𝑚 = 4 d. Click in cell G13 and then in the Formula bar (CHAPTER 1) to see how equation (12.75) 
𝑅𝑅𝑚𝑚 = 𝑚𝑚𝑟𝑟𝑅𝑅𝑖𝑖 is implemented using the value of 𝑅𝑅𝑖𝑖 from 4 days earlier than the current row. The 
residuals 𝑟𝑟 column is calculated using equation (4.12), and the first entry in cell H13 is =F13-G13. 
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The 𝑟𝑟2 column is calculated by squaring the residuals. The quality of fit 𝑄𝑄 is calculated using 
equation (6.11), i.e., =SUM(I13:I49), as we’re going to fit equation (12.75) to the period between 
March 7, 2020 and April 12, 2020 inclusive – when the death rate was changing most rapidly.  
 

 Q.12.63  DISCUSSION QUESTION  (a) The initial value of the mortality ratio is 𝑚𝑚𝑟𝑟 = 0.03, 
which corresponds to 3% of people reported infected with COVID-19 dying from the 
disease. Adjust 𝑚𝑚𝑟𝑟 by hand to see how it affects the scaled infection rate series in the 
Correlation between infection and death graph. By eyeballing the graph and monitoring 
the value of 𝑄𝑄, find the best-fit value of 𝑚𝑚𝑟𝑟 to the nearest 0.01. Then run Excel’s Solver 
with a Set Objective of $A$6, the cell for the quality of fit 𝑄𝑄; the To: radio button set to  
Min; and By Changing Variable Cells: set to $A$3, the cell for the mortality ratio 𝑚𝑚𝑟𝑟. Record 
the best-fit values of the mortality ratio 𝑚𝑚𝑟𝑟 and the quantity of fit 𝑄𝑄 in the Progress table 
using Paste Values. Notice that the value of 𝑄𝑄 is automatically plotted in the Finding the 
smallest Q with a progress table graph. Record your Correlation between infection and 
death graph for  𝑡𝑡𝑚𝑚 = 4 d.  
(b) Then change the formula for the expected value of 𝑅𝑅𝑚𝑚 in cell G13 to =$A$3*E8, which 
corresponds to equation (12.75) with 𝑡𝑡𝑚𝑚 = 5 d, then repopulate the e (1/d) column using 
the left-double-click copy method. Then rerun Excel’s Solver to find the least-squares fit 
value of 𝑚𝑚𝑟𝑟 for 𝑡𝑡𝑚𝑚 = 5 d and record the best-fit values of the mortality ratio 𝑚𝑚𝑟𝑟 and the 
quantity of fit 𝑄𝑄 in the Progress table. Finally, repeat that same procedure for 𝑡𝑡𝑚𝑚 = 6 d, 
𝑡𝑡𝑚𝑚 = 7 d, 𝑡𝑡𝑚𝑚 = 8 d and 𝑡𝑡𝑚𝑚 = 9 d. Add a series using small filled circles for the four 
smallest 𝑄𝑄 values and add a quadratic trendline to show minimum of 𝑄𝑄. Record your 
progress table and record the 𝑄𝑄 versus 𝑡𝑡𝑚𝑚 graph. 
(c) Change the formulas in the e (1/d) column back to the formula for the best-fit value of 
𝑡𝑡𝑚𝑚, rerun Solver and then record your best-fit Correlation between infection and death 
graph, together with the best-fit parameters 𝑚𝑚𝑟𝑟 and  𝑡𝑡𝑚𝑚. 
(d) Briefly comment on the quality of the observed correlation. 
(e) Briefly comment on the values of the fitted parameters and how they relate what you’ve 
learned about COVID-19 from other sources. 

 
 Q.12.64  (a) Extend the Correlation between infection and death graph to plot all the data 
out to Memorial Day (day 89). Briefly comment on how well the correlation equation 
(12.75) does in predicting the mortality rate from the infection rate for the next 43 days. 
(b) Make a copy of the correlation graph and change the vertical 𝑅𝑅𝑚𝑚-axis to a Logarithmic 
scale. Record your semi-log graph for the mortality rate 𝑅𝑅𝑚𝑚 as a function of time. 
Note:  The warning that you get from Excel is caused by the reported value of zero deaths 
on March 20, 2020. Click the [OK] button but note that the zero-value data point for 𝑅𝑅𝑚𝑚 is 
not plotted in the semi-log graph.  
(c) Briefly describe what new insights this new perspective provides about the correlation 
and the nature of both the new infection rate and the death rate. 
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 Q.12.65  STATISTICS QUESTION  Test whether your best-fit results from Q.12.63 and Q.12.64 
are consistent with the hypothesis that they are correlated.  
Note: If you’ve taken a statistics class, you should use what you learned to design your 
answer.  

About what you discovered: correlation between infection and death 
Fig.12.18 shows my answer to Q.12.63(b). I changed the name of the polynomial trendline to 
something more descriptive and I used the Forecast feature to extend the quadratic fit a day on 
either side of the four days fitted. The fitted curve illustrates how the minimum in 𝑄𝑄 versus 𝑡𝑡𝑚𝑚 is 
a quadratic (CHAPTER 6). Another feature of Fig.12.18 that you should note is that there is a large 
proportional decrease between the values of 𝑄𝑄 for 𝑡𝑡𝑚𝑚 = 5 d and 𝑡𝑡𝑚𝑚 = 6 d and between 𝑡𝑡𝑚𝑚 = 8 d 
and 𝑡𝑡𝑚𝑚 = 7 d. This can be contrasted with the miniscule differences in 𝑄𝑄 that you noticed when 
fitting the overspecified SIR model to the USA data in Q.12.61. If the changes in 𝑄𝑄 are relatively 
small, then the parameters are not well determined. The large changes in 𝑄𝑄 shown in Fig.12.18 
indicate that our estimate of 6 d ≤ 𝑡𝑡𝑚𝑚 ≤ 7 d is well determined for the period of the fit – March 
7 to April 12, 2020. 

 

 
Fig.12.18 Excel chart showing data from the progress table you made in Q.12.63(b). The four lowest  
points have been fit to a Polynomial Order 2 (a quadratic) showing that the minimum in 𝑄𝑄 lies between 6  
and 7 days, indicating that the best-fit integer value of 𝑡𝑡𝑚𝑚 = 6 d and the corresponding best-fit value of 
𝑚𝑚𝑟𝑟 = 0.061.  

Data analysis  
It’s important when you’re analyzing data to be mindful of how it’s collected and what it actually 
means. When I first did the analysis for Q.12.63, I was surprised by the fitted value of 𝑡𝑡𝑚𝑚 = 6 d, 
as I had heard that it usually took from two weeks to two months for someone to die from COVID-
19. The first thing we should do when interpreting data is to make sure that we’re clear about what 
the data actually represent. Our data for new infections (confirmed cases per day) doesn’t 
represent when people are first infected. It represents when their first test for COVID-19 came 
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back positive and was officially reported. During the initial period that you analyzed in Q.12.63, 
the official report may have occurred a week or more after their sample was taken, which in turn 
could have been some time after they were actually infected. In addition, during the initial part of 
the outbreak, only people who were already exhibiting severe symptoms were usually tested, and 
then often only after they’d been hospitalized. Hence, it’s not surprising that many of the fitted 
parameters changed later on. 
 
Fig.12.19 shows your answer to Q.12.64(b). The apparent correlation between the reported death 
rate 𝑅𝑅𝑚𝑚 (USA deaths) and the prediction of equation (12.75) (scaled infection rate based on 𝑅𝑅𝑖𝑖) 
seems quite remarkable. However, we should note that there’s a lot of scatter in both series, 
particularly the death rate. In addition, there are 4 𝑅𝑅𝑚𝑚 data points at days 75, 82, 82 and 89 that 
appear to be substantially lower than the prediction of equation (12.75). Despite the differences, I 
was quite surprised by the closeness of the correlation. There are a lot of assumptions about the 
reported data that have been called into question, so my expectation was that there would be clear 
qualitative differences between the infection rate data and the death rate data. More on this topic 
in SECTION 12.6. 
 

 
Fig.12.19 Excel chart showing the reported death rate in the USA from March 7 to May 25, 2020,  
(Memorial Day). The scaled infection rate series was calculated from the reported confirmed new cases per  
day 𝑅𝑅𝑖𝑖 using equation (12.75) using the best-fit parameters you found in Q.12.63, 𝑚𝑚𝑟𝑟 = 0.061 and 𝑡𝑡𝑚𝑚 = 6 d. 
Data source ECDC. 

 
Fig.12.20 shows empirical fits (they are exponentials) motivated by the shape of the infection 
rate and death rate data for the US from February 27 to May 25, 2020 shown in Fig.12.19. If I had 
started writing this CHAPTER 12 on May 25, 2020, I probably would have started with this graph 
as motivation. It’s worth noting that we’ve already explained the functional form of these 
empirical fits with the UG and ED models, which are special cases of the SIR model. Finally, 
it’s interesting to note that there are only 9 days (empty open circles) between the exponential 
growth and exponential decay curves shown in Fig.12.20. 
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Fig.12.20 Excel chart showing a semi-log plot of the initial stages of the COVID-19 outbreak in the  
United States. The open circles show the new infection rate data, reported as confirmed cases per day by the  
ECDC. The fitted lines show a linear regression fit to the log of the raw data (using Excel’s exponential  
trendline). The solid line shows the fit before social distancing from February 27 until March 24, 2020, and  
the dashed line shows the fit from April 3 until May 25, 2020 showing the effect of social distancing. 

 
 
 Q.12.66  RESEARCH QUESTION  The correlation in Fig.12.19 and the exponential fits in 
Fig.12.20 suggest a simple way to analyze the data and to investigate how many people in 
the U.S. could have been spared COVID-19 if social distancing was implemented earlier 
and the ED model decay constant remained the same. Using a simple empirical model, 
investigate and report how implementing social distancing earlier could have saved lives.  

About what you discovered: estimated lives lost caused by one week of inaction 
Fig.12.21 shows my answer to Q.12.66. It utilizes a very simple fit to the USA data using the UG 
model up to March 24, 2020, using a function of the form 
 
 𝑅𝑅𝑖𝑖 = 𝐵𝐵0𝑒𝑒𝑘𝑘𝑔𝑔𝑡𝑡 (12.76) 
 
The USA data from April 3, 2020 onward are modeled using the ED model using equation (12.68) 
and the transitional data are modeled using an equation of the same form as equation (12.76), but 
with a different prefactor and rate constant. The basic idea behind the projection is that earlier 
implementation of social distancing can be modeled by a time shift of Δ𝑡𝑡 = 7 d in the starting 
point of the ED model and the transitional curves, but that the slope of the exponential decay 
doesn’t change significantly because social distancing and mask wearing etc. were implemented 
in the same manner. The lower piecewise continuous projection was made using that assumption. 
The fact that the slopes of the upper and lower curves are the same in the semi-log plot in panel 
(a) of Fig.12.21 is a direct consequence of that assumption. The time shift can be confirmed by 
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noting that the beginning of the transitional line connecting the UG and ED lines is indeed shifted 
backward 7 days and that the intersection of the projected ED model (dashed line) with the UG 
model also appears to be seven days earlier than the intersection of the LS fitted UG and ED 
models. 
 

 
Fig.12.21 Excel charts showing a semi-log plot of the initial stages of the COVID-19 outbreak in the  
United States. The open circles show the USA data, reported as confirmed cases per day by the ECDC. The  
fitted lines show LS fits to exponential functions of the form of equations (12.76) and (12.68). The dashed  
line shows the change in the prediction, assuming that social distancing occurred 7 days earlier. (a) Semi-log  
graph. (b) Linear-scale graph of the same data and projections. The area between the solid purple line and the  
USA data indicate lives lost by a 7-day delay in implementing social distancing. 

 
Table 12.2 shows data from estimates shown in Fig.12.21. The first row is the data reported by 
the ECDC . Dividing the number of reported deaths by the number of infections yields the crude 
mortality ratio of 𝑚𝑚𝑐𝑐 = 0.0595. The number of deaths in the empirical fit was calculated by 
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multiplying the number of infections by the crude mortality ratio. As shown in Table 12.2, the 
empirical fit matches the ECDC numbers to within 0.11%. 
 

Table 12.2 Data from the ECDC and model estimates for  
cumulative infections and deaths in the US from February 27 to May 25, 2020 

 infections  deaths  
ECDC  1,643,185 97,720 

empirical fit 1,645,000 97,830 

7 days earlier 261,000 15,530 

saved 1,384,000 82,300 
 

 
The “7 days earlier” row shows the cumulative predictions for the same period (February 27 to 
May 25, 2020) if social distancing had been implemented just 7 days earlier, and the “saved” row 
shows the predicted reductions in the cumulative totals of about 84%. It’s important to note that 
the effects of the delay are ongoing. For example, the prediction shown in Fig.12.21 is that the 
predicted daily infection rate on May 23, 2020 (arrow in figure) would be reduced by about 19,000 
infections per day if social distancing measures were implemented 7 days earlier in March 2020. 
That corresponds to about 1000 lives that would have been saved on that day according to the 
projection. That’s an ongoing illustration of the importance of acting quickly during the initial 
exponential growth phase of the outbreak. It’s an important public health policy lesson.  

 
 Q.12.67  RESEARCH QUESTION  Use the full SIR model to investigate how many US infections 
and lives could have been saved if social distancing was implemented earlier. Report your 
findings including the total number of infections and deaths until the outbreak dies out, 
assuming the model parameters remain unchanged. 
 
 Q.12.68  DISCUSSION QUESTION  (a) During US state re-openings in early to mid-May 2020 
some politicians made claims that the infection rate in their region was staying the same or 
going up because of increased testing. If their assertions are correct, and more mild or 
asymptomatic cases are being detected, briefly describe your prediction for what should 
happen to the reported mortality ratio 𝑚𝑚𝑟𝑟. 
(b) Fact check those political claims using the data in your spreadsheet to investigate if 
there has been any significant change in the national mortality ratio during the last four 
weeks of data up to Memorial Day (May 25, 2020). Briefly report your conclusions 
including graph(s). 
Hint: A straightforward way to do that might be to calculate the daily (or weekly average) 
mortality ratio. Can you devise a more sophisticated test? 
(c) Calculate and record the average value of 𝑚𝑚𝑟𝑟 for the last week of data in  
BPM.Ch12_Infection_and_death.xlsx.  
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(d) Briefly discuss what other factors might affect the mortality ratio over time, e.g. more 
effective treatments, widespread randomized testing, or any medical breakthroughs etc.  
(e) On March 6, 2020 the World Health Organization reported the crude mortality ratio 
(the number of reported deaths divided by the reported cases) for COVID-19 as 𝑚𝑚𝑐𝑐 = 3 −
4% [WHO 2020]. This number is comparable with, but not identical to, the mortality ratio 
𝑚𝑚𝑟𝑟 in equation (12.75). Briefly compare the WHO value of 𝑚𝑚𝑐𝑐 with the values of 𝑚𝑚𝑟𝑟 
you’ve calculated from the ECDC data for the US.  
(f) Using the ECDC data, calculate the crude mortality ratio for the period from February 
27 to May 25, 2020 and briefly discuss factors that might be responsible for it being 
significantly greater than the 3 − 4% reported by the WHO [2020]. 

About what you discovered: the mortality ratio is decreasing 
As you discovered in Q.12.68(f), the US crude mortality ratio for the period from February 27 to 
May 25, 2020 is 𝑚𝑚𝑐𝑐 = 0.0595 ≈ 0.06. That’s significantly greater than the 𝑚𝑚𝑐𝑐 = 0.03 − 0.04 
reported by the WHO [WHO 2020]. Lack of adequate testing can explain some of the difference. 
However, people of color have been (as of late May 2020) disproportionately represented in the 
US death toll. The US mortality ratio is currently (mid May 2020) double the low end of the range 
reported by the WHO.  
 

 
Fig.12.22 Excel chart showing the mortality ratio 𝑚𝑚𝑟𝑟 calculated using equation (12.75) for the four weeks  
leading up to Memorial Day (May 25, 2020). The filled circles are the daily values and the open squares show  
the corresponding weekly-average values. The dotted horizontal lines show the range reported by the WHO on  
March 6, 2020. 

 
Fig.12.22 shows my graphical answer to Q.12.68(b). It shows the mortality ratio 𝑚𝑚𝑟𝑟 calculated 
using a mortality delay time of 𝑡𝑡𝑚𝑚 = 6 d. The figure shows a steady decline in the mortality ratio 
during the month of May 2020. This observation actually lends credence to the idea that more 
mild or asymptomatic cases are being detected because of increased testing on the national level  
– assuming that the intrinsic mortality ratio (probability of an infected person eventually dying 
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from COVID-19) is a constant. However, there may be other contributing factors to the decline in 
𝑚𝑚𝑟𝑟. One is that the proportion of high-risk groups being infected is declining and that the 
proportion of lower-risk groups is increasing, e.g., proportionally less people over 65 are getting 
infected and more under 30s are getting infected. Another possibility is that therapeutics and/or 
better treatment protocols are helping to reduce the number of deaths. Then there are the reported 
inconsistencies between states’ criteria for reporting cases and deaths… The decline in the 
mortality ratio during May 2020 also makes projections for the death toll even more uncertain.  
 

 Q.12.69  RESEARCH QUESTION  Investigate and report on the changes in the mortality ratio 
and the crude mortality ratio in the data reported by the ECDC and/or from other sources 
for the US, individual states or other regions/countries. 

 
 Q.12.70  RESEARCH QUESTION  Some people have argued that the mortality rate 𝑅𝑅𝑚𝑚 is a more 
reliable measure of the spread of the novel SARS-CoV-2 coronavirus than the infection 
rate because of inconsistencies in testing by state and over time. Using that idea, develop 
and report the results of fitting the SIR model to 𝑅𝑅𝑚𝑚 to the social distancing period in the 
US. 
Note: There are also problems with the mortality rate data because of unreported COVID-
19 deaths, which also vary by state. 

About what you discovered: disclaimer – the purpose of simple models  
Because of the seriousness of this topic, I think it’s important to be super clear that the models 
we’ve been developing in this CHAPTER 12 are not state-of-the-art epidemiological models. The 
SIR model that we’ve been studying has been around for almost a century and there are many 
more sophisticated models that professional epidemiologists use for informing public health 
policy.  The real purpose of this chapter is the same as for all the others in this book – to highlight 
a scientific approach using simple models to provide insights into how the real world works. As I 
mentioned before, people aren’t molecules! They don’t wander around randomly and have random 
encounters with others in the population. They can follow instructions for social distancing, mask 
wearing and good hygiene – but they can also ignore them. The models we’ve been developing 

can be improved in many ways, but I would caution anyone considering 
using models with too many adjustable parameters … Recall from 
CHAPTER 6 the quote attributed to John von Neumann “With four 
parameters I can fit an elephant, and with five I can make him wiggle his 
trunk.” [Mayer et al. 2010]. Finding an equation that merely summarizes 
existing data is not our goal – nor is it to predict exactly what will happen 

in the future. The purpose of our introductory modeling approach is to discover if a simple model 
can explain something about what’s happening out in the real world and hopefully provide new 
insights. 
 
The advantage of simple models like the SIR model is that they are – well – simple. That simplicity 
is a modeling virtue because it means that we can completely understand the whole model and its 
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implications. No mysterious fudge factors are allowed to make it fit real data better. We’re not 
trying to predict tomorrow’s weather; we’re trying to understand why clouds form in layers.1  

12.6 Modeling the transition to social distancing  

Lives lost because people didn’t wear masks 
The ultimate goal for this SECTION 12.6 is to estimate how many lives were lost in the US up to 
Memorial Day because people didn’t wear masks etc. However, before we do that, we’ll need to 
investigate modeling the transition from the initial exponential growth to the initial period of 
social distancing in the US. One way to do that is to allow for a change in the infection rate 
constant 𝑘𝑘𝑖𝑖 as time progresses in the SIR model [Hilborn 2020].  
 
From our research so far, we know that the SIR model can explain the exponential growth at the 
beginning of the outbreak and that it can also model the gradual decay in the infection rate during 
the period of social distancing from April 3 to Memorial Day (May 25, 2020). In SECTION 12.5 
we made the change to social distancing and mask wearing by starting a fresh version of the SIR 
model with a different infection rate constant, but that meant that we had to fit a different value 
of 𝑁𝑁0 to make the model match the starting point of the data. An alternate method would be to 
simply change the 𝑘𝑘𝑖𝑖 “on the fly” to model the switch to social distancing. We can do that in our 
spreadsheet by making 𝑘𝑘𝑖𝑖 a variable and adding a column for it in the SIR model table. Since 𝑘𝑘𝑖𝑖 
is no longer a constant parameter, let’s call it the infection rate coefficient. Let’s start by finding 
a good value of 𝑘𝑘𝑖𝑖 for the initial exponential growth period if the timestep is δ𝑡𝑡 = 1 d. 

Finding 𝒌𝒌𝒊𝒊 = 𝒌𝒌𝟏𝟏 when 𝛅𝛅𝒕𝒕 = 𝟏𝟏 𝐝𝐝 
Open the preformatted spreadsheet BPM.Ch12_Step_change.xlsx. The Param$ column A now 
includes two values for the infection rate coefficient. 𝑘𝑘1 is the value of 𝑘𝑘𝑖𝑖 during the initial 
exponential growth period (epoch ①) and 𝑘𝑘2 is the value of 𝑘𝑘𝑖𝑖 during the period of social 
distancing (decay) (epoch ②). Param$ column A also includes a parameter for the transition 
time 𝑡𝑡12 between epochs ① and ②. However, before we investigate making the transition, we 
need to make sure that we have a good fit to the initial exponential growth in epoch ①. Let’s start 
by using the same method we used in Q.12.43 and Q.12.44. 
 

 Q.12.71  DISCUSSION QUESTION  (a) In spreadsheet BPM.Ch12_Step_change.xlsx run 
Excel’s Solver with a Set Objective of $P$7, the cell for the quality of fit 𝑄𝑄 for the first 25 
days in the USA new infections table; the To: radio button set to  Min; and By Changing 
Variable Cells: set to $P$3,$P$5, the cells for UG model parameters 𝑘𝑘𝑢𝑢 and 𝑁𝑁𝑢𝑢. Record and 
comment on your LS fitted 𝑅𝑅𝑖𝑖(𝑡𝑡) graph for the UG model (12.54) for the first 40 days. 

 
1 Hmm… that sounds like an interesting project that could be tackled by adapting our marble game model of the atmosphere 
in CHAPTER 9 to the “adiabatic atmosphere” and combining it with our marble game model of water evaporation and 
condensation, also from CHAPTER 9. 
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(b) As you noted in part (a), the LS fit to the UG model during the first 25 days is quite 
good. By inspecting cells A11, F4 and G4, write out the algorithm instructions for 𝑘𝑘1, 𝑘𝑘𝑖𝑖new 
and 𝑅𝑅𝑖𝑖new, to set out how the algorithm differs from Q.12.59(c).  
(c) Briefly comment on the correspondence between the SIR model and the USA data for 
the 𝑅𝑅𝑖𝑖(𝑡𝑡) data for the first 25 days of the outbreak and briefly explain why the formula for 
𝑘𝑘1, equation (12.60) does such a poor job of matching 𝑘𝑘𝑖𝑖 = 𝑘𝑘1 to the initial growth in the 
SIR model. 
Hint: Compare the SIR timestep in the current spreadsheet with the one we used in 
Q.12.44.  

About what you discovered: the discrete-time SIR model comes to the rescue 
As you discovered in Q.12.71(c), a timestep of δ𝑡𝑡 = 1 d is way too big for our FD implementation 
of the SIR model. However, Appendix 12.A outlines a way to account for the errors caused by the 
timestep being too big (δ𝑡𝑡 = 1 d) during the initial exponential growth period. It involves 
replacing 𝑘𝑘𝑢𝑢 with a growth rate parameter 𝑔𝑔 given by equation (12.A.1). We can then calculate 
𝑘𝑘1 using equation (12.60) but with 𝑘𝑘𝑢𝑢 replaced with 𝑔𝑔/δ𝑡𝑡 using equation (12.A.8), so that the 
infection rate constant during the initial exponential growth period can be calculated using  
 
 𝑘𝑘1 =

𝑔𝑔
δ𝑡𝑡

+ 𝑘𝑘𝑟𝑟 = (21/𝑡𝑡𝑑𝑑 − 1)  + 𝑘𝑘𝑟𝑟 = 21/𝑡𝑡𝑑𝑑 + 𝑘𝑘𝑟𝑟 − 1 (12.77) 
with δ𝑡𝑡 = 1 d. 
Note: An alternative would be to use the continuous-time formulation with δ𝑡𝑡 = 0.01 d. While 
that’s awkward to do in Excel, it’s fairly straightforward to do in a programming language like 
Python.  
 

 Q.12.72  DISCUSSION QUESTION  (a) Change the formula for 𝑘𝑘1 in the Param$ column A to 
match equation (12.77) using the instruction 

  
 𝑘𝑘1 = 2^(1/𝑡𝑡𝑑𝑑) + 𝑘𝑘𝑟𝑟 − 1 (12.78) 
 

then record and comment on your 𝑅𝑅𝑖𝑖(𝑡𝑡) graph for the new SIR model during the first 40 
days. 
(b) Compare the values of 𝑘𝑘𝑖𝑖 = 𝑘𝑘1 calculated with equations (12.60) and (12.78). 
Hint: Don’t forget to use what you learned from the “talking numbers” AWYD in 
CHAPTER 2. You might find the BPM.Ch02_Talking_numbers.xlsx preformatted 
spreadsheet useful. 
(c) Briefly discuss which value of 𝑘𝑘1 (from equation (12.60) or (12.78)) should be used to 
find the value of ℛ0. I.e., which one is more representative of the underlying process that 
the model represents? Then change the formula for ℛ0 accordingly. 
Hint: The underlying process that the model is based upon is a continuous-time Poisson 
process. 
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About what you discovered: correcting 𝓡𝓡𝟎𝟎 in the discrete-time SIR model 
As you discovered in Q.12.72, the more representative value of infection rate coefficient is 𝑘𝑘𝑖𝑖 =
𝑘𝑘1 = 0.447 d−1 calculated using (12.60). That’s because it doesn’t depend on the value of δ𝑡𝑡. 
Hence, the formula for the basic reproduction number in the spreadsheet should be 
 
 ℛ0 = (𝑘𝑘𝑢𝑢 + 𝑘𝑘𝑟𝑟)𝜏𝜏𝑖𝑖 (12.79) 
 
which uses equation (12.60) for 𝑘𝑘𝑖𝑖 because it better represents the underlying continuous-time 
process (δ𝑡𝑡 → 0) that the SIR model is based upon. 
Note: Using the value from (12.78) is a work around that accounts for the timestep of δ𝑡𝑡 = 1 d 
being too big during the exponential growth during epoch ①.   

A step change in 𝒌𝒌𝒊𝒊 
Using the value for 𝑘𝑘1 (for δ𝑡𝑡 = 1 d) from Q.12.72, we can now investigate how changing 𝑘𝑘𝑖𝑖 
affects the model. The spreadsheet includes a value of 𝑘𝑘2 = 0.1178 d−1 in the Param$ column A. 
That value of 𝑘𝑘2 = 0.1178 d−1 is taken from our fit in Q.12.59(c) to the USA data from April 3 
to May 25, 2020 with 𝑁𝑁 = 8.25 × 107 and 𝜏𝜏𝑖𝑖 = 8 d. Let’s start by investigating what the model 
predicts, if we simply switch from 𝑘𝑘𝑖𝑖 = 𝑘𝑘1 to 𝑘𝑘𝑖𝑖 = 𝑘𝑘2 to model the transition from initial 
exponential growth (epoch ①) to the decay after social distancing took effect (epoch ②).  
 
As we saw in Q.12.71(b), the spreadsheet you’ve been working on has a column for 𝑘𝑘𝑖𝑖 because 
it’s now a variable in the simulation. The spreadsheet also has a column for a “transition function” 
𝐹𝐹12 used to change 𝑘𝑘𝑖𝑖. Param$ column A also includes a parameter for the transition time 𝑡𝑡12 
between epochs ① and ②. Using 𝑘𝑘1 and 𝐹𝐹12 we can calculate 𝑘𝑘𝑖𝑖 using  
 
 𝑘𝑘𝑖𝑖new = 𝑘𝑘1 + 𝐹𝐹12new  ∗ Δ𝑘𝑘12 (12.80) 
 
where Δ𝑘𝑘12 = (𝑘𝑘2 − 𝑘𝑘1) is the change in 𝑘𝑘𝑖𝑖 at the transition time, and 𝐹𝐹12 is the transition 
function, between epoch ① and epoch ②. It’s a step change or step function given by 
 
 𝐹𝐹12new = IF(𝑡𝑡new < 𝑡𝑡12, 0,1) (12.81) 

 
which means that 𝐹𝐹12 = 0 when 𝑡𝑡new < 𝑡𝑡12 and 𝐹𝐹12 = 1 when 𝑡𝑡new ≥ 𝑡𝑡12. The net effect of 
equations (12.80) and (12.81) is that 𝑘𝑘𝑖𝑖 = 𝑘𝑘1 when 𝑡𝑡 < 𝑡𝑡12 and 𝑘𝑘𝑖𝑖 = 𝑘𝑘2 when 𝑡𝑡 ≥ 𝑡𝑡12. Equation 
(12.80) can then be written as  
 𝑘𝑘𝑖𝑖new = 𝑘𝑘1 + 𝐹𝐹12new ∗ (𝑘𝑘2 − 𝑘𝑘1) (12.82) 
 
to eliminate Δ𝑘𝑘12 from the spreadsheet.  
 
Using the combination of equations (12.81) and (12.82) might seem overly complicated, but as 
you’ll discover after Q.12.73, the advantage is that we can make changes to how 𝑘𝑘𝑖𝑖 transitions 
from 𝑘𝑘1 to 𝑘𝑘2 by simply changing the transition function 𝐹𝐹12. 

http://circle4.com/biophysics


Chapter 12: COVID-19 and epidemiology (web edition) Page 70 of 124  v.4.4 © Peter Hugo Nelson 2023 
 

 Biophysics and Physiological Modeling Page 70 of 124    http://circle4.com/biophysics 

 
 Q.12.73  DISCUSSION QUESTION  (a) Fill in the column for 𝐹𝐹12 using equation (12.81) and the 
initial guess for the transition time of 𝑡𝑡12 = 30 d. Then fill in the column for 𝑘𝑘𝑖𝑖 using 
equation (12.82). Then adjust the value of 𝑡𝑡12 by hand to the nearest day that makes the 
SIR model curve visually match the period of social distancing as well as possible. Record 
your semi-log graph of 𝑅𝑅𝑖𝑖(𝑡𝑡) for the new SIR model during the first 100 days and briefly 
comment on the fitted model. 
(b) Use Excel’s Solver to find the best-fit value of 𝑡𝑡12 (change the Set Objective to $A$21, 
the cell for the quality of fit 𝑄𝑄; the To: radio button set to  Min; and By Changing Variable 
Cells: set to $A$19, the cells for the transition time 𝑡𝑡12). Briefly comment on why the fitted 
curve doesn’t change from the value you found by hand in part (a) with 𝑡𝑡12 = 35 d 
(c) Before reading ahead, briefly explain why the value of 𝑅𝑅𝑖𝑖 in epoch ① must reach such 
a high value in order to make the SIR value of 𝑅𝑅𝑖𝑖 match the USA data during epoch ②.  
(d)  CHALLENGE QUESTION  Before reading ahead, see if you can come up with a way to make 
the transition fit the data better.  

About what you discovered: 𝑹𝑹𝒊𝒊(𝒕𝒕) is a rate  
 

 
Fig.12.23 Excel chart showing the fitted SIR model with a step change in the infection rate coefficient from  
from 𝑘𝑘𝑖𝑖 = 𝑘𝑘1 = 0.505 d−1 to 𝑘𝑘𝑖𝑖 = 𝑘𝑘2 = 0.118 d−1. 𝑘𝑘1 is calculated using equation (12.78) for the initial  
epoch ① of exponential growth (orange dots) and 𝑘𝑘2 is your value from Q.12.59(c) for the epoch ② of  
social distancing (green dots). The only adjustable parameter in the fit is the transition time 𝑡𝑡12 = 35 d between  
𝑘𝑘1 and 𝑘𝑘2. The other parameters in the model are 𝑁𝑁 = 8.25 × 107, δ𝑡𝑡 = 1 d, 𝜏𝜏𝑖𝑖 = 8 d, and 𝑁𝑁0 = 5.541  
calculated using equation (12.59). As shown, the fit produces a transition spike (grey line) that doesn’t  
match the reported transition data. Data source ECDC [2020]. 

 
One of the things that you should have noticed in Q.12.73 is that the infection rate 𝑅𝑅𝑖𝑖(𝑡𝑡) makes a 
dramatic step change downward when you make a step change in the infection rate coefficient 
(see Fig.12.23). That’s because the infection rate is given by equation (12.8), i.e., 𝑅𝑅𝑖𝑖 = 𝑘𝑘𝑖𝑖𝑁𝑁𝑖𝑖𝑠𝑠. 
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When we change 𝑘𝑘𝑖𝑖, the values of 𝑁𝑁𝑖𝑖 and 𝑠𝑠 don’t change. Hence, as you discovered in Q.12.73, a 
step change in 𝑘𝑘𝑖𝑖 must necessarily produce a similar step change in 𝑅𝑅𝑖𝑖. The result is that if we 
want the model to match the fitted ED model during epoch ②, then 𝑅𝑅𝑖𝑖 must overshoot the 
reported USA data before the step change occurs producing the transition spike shown in 
Fig.12.23. That apparent inconsistency between the model and the USA data was the reason why 
we didn’t initially try to use the SIR model with a variable 𝑘𝑘𝑖𝑖 to model USA data from Feb. 26 
through May 25, 2020. However, after many misstarts and failed attempts, on June 23, 2020 I 
finally realized that there’s a simple way to modify the step change in 𝑘𝑘𝑖𝑖 – that can be justified by 
a simple common-sense argument, and that can make the transition match up with the USA data 
by only adding only one more adjustable parameter. Let’s see what we can discover.  
 
Note: We’re assuming that the mean infectious time 𝜏𝜏𝑖𝑖 doesn’t change after the transition, which 
implies that the fraction of infectious people that self-isolate doesn’t change. Clearly if testing and 
contact tracing in the US were more widespread, and isolation protocols were enforced, then 𝑘𝑘𝑟𝑟 
would increase in epoch ② and 𝑘𝑘𝑟𝑟 would then need to be interpreted as the removal rate 
constant of infectious people from the model population due to isolation following contact 
tracing.  

The US is a union of many states and individuals 
Maybe you figured this out in Q.12.73(d), but it took me more than a week to realize that the 
transition model needs to explicitly account for the fact that not all states, communities or 
individuals took up social distancing etc. at exactly the same time or to the same extent. That was 
step one. Step two was to realize we could implement that idea in Excel by adding a single 
additional parameter that accounts for the statistical spread in the times at which individual people 
began practicing social distancing etc. It’s an idea that’s so ubiquitous that we’ve already talked 
about how it relates to the marble game in CHAPTER 8. You probably learned about it in high 
school – it’s the normal (or Gaussian) distribution. The implementation that we’ll use has two 
parameters: 𝑡𝑡12 is the mean transition time and 𝜎𝜎12 “sigma-1-2” is the standard deviation of 
the distribution of transition times. As we discovered in CHAPTER 8, the normal distribution can 
be implemented in Excel using the NORM.DIST function as follows 
 
 𝐹𝐹12new = NORM. DIST(𝑡𝑡new, 𝑡𝑡12,𝜎𝜎12, TRUE) (12.83) 
 
The Excel function NORM.DIST(x, mean, standard_dev, cumulative) used in equation (12.83) 
matches up with our application as follows: 𝐹𝐹12new is the value of the cumulative normal 
distribution for the current time 𝑡𝑡new; x = 𝑡𝑡new is the time in the current row of spreadsheet; mean 
= 𝑡𝑡12 is the mean transition time; standard_dev = 𝜎𝜎12 is the standard deviation of the distribution 
of transition times; and cumulative = TRUE means that the function returns the cumulative 
distribution function. If cumulative = FALSE, the function returns the probability density function 
𝑆𝑆12 (the normal “bell” curve – see CHAPTER 8 and Probability Density Functions from 
Histograms [Nelson 2015]). We want the cumulative distribution function because we want our 
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function to go from 𝐹𝐹12 = 0 to 𝐹𝐹12 = 1, which is exactly what the cumulative normal distribution 
does. 
 

 Q.12.74  DISCUSSION QUESTION  (a) Add the parameter 𝜎𝜎12 [=] d to the Param$ column A of 
your spreadsheet and enter a number of days for the standard deviation that you think might 
be a reasonable initial guess. Change the formula for 𝐹𝐹12 to instruction (12.83), then copy 
the formulas for the residuals 𝑟𝑟 and the square of the residuals 𝑟𝑟2 from day 37 up to day 1 
using the left-click-drag copy method. Then rerun Solver to find the best-fit value of 𝑡𝑡12. 
Then try a range of values for 𝜎𝜎12 to get a feel for how its value affects the fitted function 
after you run Solver. You should try 𝜎𝜎12 ∈ {1, 4, 7, 14, 21} d. Briefly summarize what you 
discovered.  
(b) Run Excel’s Solver again but first set By Changing Variable Cells: to the cells for both 
𝑡𝑡12 and 𝜎𝜎12 so that Solver simultaneously finds the best-fit values of both 𝑡𝑡12 and 𝜎𝜎12. 
Record your linear-scale graph of 𝑅𝑅𝑖𝑖(𝑡𝑡) for the new SIR model during the first 100 days 
and briefly comment on the fitted model. 
(c) Make a copy of your linear scale chart of 𝑅𝑅𝑖𝑖(𝑡𝑡) and add a series for 𝑘𝑘𝑖𝑖(𝑡𝑡), the infection 
rate coefficient as a function of time (column F) on the secondary axis (right-hand) axis. 
Record your linear-scale graph including 𝑘𝑘𝑖𝑖(𝑡𝑡) during the first 100 days and briefly 
comment on the infection rate coefficient and how it changes with time. Don’t forget to 
save your spreadsheet for this question, we’ll be needing it again later. 

About what you discovered: visualizing the transition to social distancing 
   

 
Fig.12.24 Excel chart showing the SIR model (solid line) fitted to the USA data (open circles). The  
infection rate constant of 𝑘𝑘1 = 0.505 d−1 for epoch ① was obtained by fitting the UG model to the first 25  
days (orange dots). The infection rate constant of 𝑘𝑘2 = 0.118 d−1 for epoch ② was obtained by fitting the  
SIR model from April 3 to May 25 (gray dots). The transition from epochs ①→② is modeled using a Gaussian  
(normal) distribution (12.83) with mean 𝑡𝑡12 = 33.3 d and standard deviation 𝜎𝜎12 = 9.19 d. 𝑆𝑆12(𝑡𝑡) (dotted line)  
is the corresponding Gaussian probability density function (12.84). Data source ECDC [2020]. 
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Fig.12.24 shows your answer to Q.12.74(b) with an additional dotted-line series for 𝑆𝑆12(𝑡𝑡), the 
probability density of the normal (Gaussian) distribution shown on the secondary (right-hand) 
axis, it’s generated using the instruction 
 
 𝑆𝑆12new = NORM. DIST(𝑡𝑡new, 𝑡𝑡12,𝜎𝜎12, FALSE) (12.84) 
 
The dotted line series 𝑆𝑆12(𝑡𝑡) represents the distribution of times in the model that people transition 
to social distancing etc. and hence change the infection rate coefficient from 𝑘𝑘𝑖𝑖 = 𝑘𝑘1 to 𝑘𝑘𝑖𝑖 = 𝑘𝑘2. 
As such, it’s a useful graphical representation of the transition from exponential growth to gradual 
decay. A notable feature of the 𝑆𝑆12(𝑡𝑡) graph is that the mean of the distribution (also the peak) 
occurs on day 33 (March 30), which falls near the middle of the linear growth period (empty open 
circles) between the fitted epochs ① and ②. 
 
The fitted SIR model in Fig.12.24 has a rounded peak before the steady decay during social 
distancing. That rounded peak is produced the combination of many transition spikes (Fig.12.23), 
which are spread out according to the ensemble average dotted line that represents the distribution 
𝑆𝑆12(𝑡𝑡) of times at which individuals adopted social distancing/lockdown.  
 
Another feature of Fig.12.24 is that the fitted model underpredicts the USA data during the 
transition time and during the last 5 days of the 25 days (orange dots) used to fit the exponential 
growth period. That’s caused in the model by people transitioning to social distancing etc. during 
those 5 days, as can be seen by the non-zero value of 𝑆𝑆12(𝑡𝑡) during that time. One way to 
compensate for that is to restrict the exponential growth fit to the first 10 days. We’ll investigate 
that approach next and see what we can discover…  
 
Open BPM.Ch12_NORM.DIST.xlsx, it’s a preformatted spreadsheet based on your answer to 
Q.12.74 and it also contains a graph formatted like Fig.12.24. As you can see in cell O4, 𝑆𝑆12(𝑡𝑡) is 
calculated using equation (12.84). The parameters in Param$ column A are from the LS fit for 𝑡𝑡12 
and 𝜎𝜎12 that you obtained in Q.12.74(b).  
 

 Q.12.75  DISCUSSION QUESTION  At the far right under the two Exponential growth in the 
USA charts, the spreadsheet has an LS fit parameters table for you to record the parameters 
for Q.12.74(b) and your answers to parts (b) and (c) of this question. The row above the 
table contains links to the cells containing the parameters 𝑁𝑁0, ℛ0, 𝑘𝑘1, 𝑘𝑘2, 𝑡𝑡12, 𝜎𝜎12, and 𝑄𝑄. 
You’ll need the table for part (d). Record the current values of the fitted parameters (your 
answer to Q.12.74(b)) using Copy and Paste Values from cells AA32:AG32 into the first 
row (AA35:AG35) of the LS fit parameters table. 
(a) After confirming that you understand how spreadsheet BPM.Ch12_NORM.DIST.xlsx 
works, run Excel’s Solver with a Set Objective of $Q$7, the cell for the quality of fit 𝑄𝑄 for 
the first 10 days in the USA new infections table; the To: radio button set to  Min; and By 
Changing Variable Cells: set to $Q$3,$Q$5, the cells for UG model parameters 𝑘𝑘𝑢𝑢 and 𝑁𝑁𝑢𝑢. 

http://circle4.com/biophysics
http://www.circle4.com/biophysics/xlsx/Ch12Ex/BPM.Ch12_NORM.DIST.xlsx
http://www.circle4.com/biophysics/xlsx/Ch12Ex/BPM.Ch12_NORM.DIST.xlsx


Chapter 12: COVID-19 and epidemiology (web edition) Page 74 of 124  v.4.4 © Peter Hugo Nelson 2023 
 

 Biophysics and Physiological Modeling Page 74 of 124    http://circle4.com/biophysics 

Record and comment on your LS fitted 𝑅𝑅𝑖𝑖(𝑡𝑡) graph for the UG model (12.54) for the first 
40 days. 
(b) Use Excel’s Solver to find the best-fit value of 𝑡𝑡12 (change the Set Objective to $A$23, 
the cell for the quality of fit 𝑄𝑄; the To: radio button set to  Min; and By Changing Variable 
Cells: set to $A$19, the cells for the transition time 𝑡𝑡12). Briefly comment on why the fitted 
curve doesn’t match the USA data as well as in Q.12.74. Don’t forget to fill out the row 
for Q.12.75(b) in the LS fit parameters table using Copy and Paste Values from cells 
AA32:AF32 
(c) Rerun Excel’s Solver to find the best-fit values of both 𝑡𝑡12 and 𝜎𝜎12 simultaneously. 
Record your linear scale graph of 𝑅𝑅𝑖𝑖(𝑡𝑡) and 𝑘𝑘𝑖𝑖(𝑡𝑡) for the new SIR model during the first 
100 days and briefly comment on the fitted model for both 𝑅𝑅𝑖𝑖(𝑡𝑡) and 𝑘𝑘𝑖𝑖(𝑡𝑡).  
(d) Record your table of 𝑁𝑁0, ℛ0, 𝑘𝑘1, 𝑘𝑘2, 𝑡𝑡12, 𝜎𝜎12, and 𝑄𝑄 values for Q.12.74(b) and parts (b) 
and (c) of this question.  

Using least squares to find 𝒌𝒌𝟏𝟏 directly 
In this subsection we’re going to use least squares to find the discrete-time 𝑘𝑘1 directly instead of 
using the UG model fit. Hence, we can’t use equation (12.61) to find the doubling time 𝑡𝑡𝑑𝑑 or 
equation (12.79) to find the basic reproduction number ℛ0. 
 

 Q.12.76  (a) Using the mathematical identity 2𝑥𝑥 = 𝑒𝑒𝑥𝑥 ln 2, solve equation (12.78) for 𝑡𝑡𝑑𝑑 to 
show that we can calculate the doubling time 𝑡𝑡𝑑𝑑 from the fitted discrete-time 𝑘𝑘1 using 
 

 𝑡𝑡𝑑𝑑 =
ln 2

ln(𝑘𝑘1 − 𝑘𝑘𝑟𝑟 + 1) (12.85) 

 
(b) By substituting equation (12.A.2) into equation (12.79), show that we can then estimate 
the continuous time ℛ0 using  

 ℛ0 = �
ln 2
𝑡𝑡𝑑𝑑

+ 𝑘𝑘𝑟𝑟� 𝜏𝜏𝑖𝑖 (12.86) 

 
where 𝑡𝑡𝑑𝑑 is given by equation (12.85). 
 
 Q.12.77  DISCUSSION QUESTION  Open and inspect spreadsheet BPM.Ch12_Gaussian.xlsx. 
You should notice that the USA new infections table has been removed because we won’t 
be doing a fit to the UG model to find 𝑘𝑘𝑢𝑢, 𝑁𝑁𝑢𝑢 and 𝑡𝑡𝑑𝑑. You should confirm that parameters 
𝑡𝑡𝑑𝑑 and ℛ0 are calculated using equations (12.85) and (12.86). The spreadsheet includes an 
LS fit parameters table that already includes the parameters for your answers to Q.12.74(b), 
Q.12.75(b) and Q.12.75(c). Once again, the row above the table contains links to the cells 
containing the parameters 𝑁𝑁0, ℛ0, 𝑘𝑘1, 𝑘𝑘2, 𝑡𝑡12, 𝜎𝜎12, and 𝑄𝑄. You should fill the table as you 
go for part (c).  
(a) Run Excel’s Solver to find the best-fit values of 𝑡𝑡12, 𝜎𝜎12 and 𝑘𝑘1  simultaneously. Then 
record your linear scale graph of 𝑅𝑅𝑖𝑖(𝑡𝑡) and 𝑆𝑆12(𝑡𝑡) for the new SIR model during the first 
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100 days and briefly comment on the fitted model for 𝑅𝑅𝑖𝑖(𝑡𝑡), 𝑘𝑘𝑖𝑖(𝑡𝑡) and 𝑆𝑆12(𝑡𝑡). Don’t forget 
to fill out the row for Q.12.75(b) in the LS fit parameters table using Copy and Paste Values 
from cells R1:X1. 
(b) Rerun Excel’s Solver to find the best-fit values of 𝑡𝑡12, 𝜎𝜎12, 𝑘𝑘1 and 𝑁𝑁0 simultaneously. 
Then make and record a semi-log graph of 𝑅𝑅𝑖𝑖(𝑡𝑡) with a linear-scale graph of 𝑘𝑘𝑖𝑖(𝑡𝑡) for the 
new SIR model during the first 100 days and briefly comment on the validity of the fitted 
parameters you obtained.  
Hint: You can Copy and Paste and then modify the linear-scale graph of 𝑅𝑅𝑖𝑖(𝑡𝑡) and 𝑘𝑘𝑖𝑖(𝑡𝑡). 
Note: If the value of 𝑁𝑁0 does not change significantly, try a starting value of 𝑁𝑁0 ∈
{1, 0.1, 0.01} and record the fitted parameters with the smallest 𝑄𝑄. You may have to run 
Solver multiple times. 
Warning: Depending on the speed of your computer, this could take a while – at least a 
couple of minutes. 
(c) Record your updated table of 𝑁𝑁0, ℛ0, 𝑘𝑘1, 𝑘𝑘2, 𝑡𝑡12, 𝜎𝜎12, and 𝑄𝑄 values including your 
values for parts (a) and (b) of this question.  
 
 Q.12.78  DISCUSSION QUESTION  (a) Set the value of the initial number infectious to 𝑁𝑁0 = 5, 
and the values of 𝑘𝑘1, 𝑘𝑘2, 𝑡𝑡12 and 𝜎𝜎12 to the values you found in Q.12.74(b), then run Excel’s 
Solver to find the best-fit values of 𝑘𝑘1, 𝑘𝑘2, 𝑡𝑡12 and 𝜎𝜎12 simultaneously. Record a linear-
scale graph of 𝑅𝑅𝑖𝑖(𝑡𝑡) and 𝑆𝑆12(𝑡𝑡) for the SIR model during the first 100 days and record the 
fitted parameters you obtained with 𝑁𝑁0 = 5, 𝑁𝑁 = 8.25 × 107 and 𝜏𝜏𝑖𝑖 = 8 d in the LS fit 
parameters table.  
Hint: You can Copy and Paste Values from cells R1:X1. 
(b) Record a linear-scale graph of 𝑅𝑅𝑖𝑖(𝑡𝑡) and 𝑘𝑘𝑖𝑖(𝑡𝑡) for the new SIR model during the first 
100 days Briefly discuss the validity of the parameters you found in part (a) and comment 
on what you learned from both the 𝑘𝑘𝑖𝑖(𝑡𝑡) and 𝑆𝑆12(𝑡𝑡) curves.  
(c) Sample different staring points for the parameters 𝑘𝑘1, 𝑘𝑘2, 𝑡𝑡12 and 𝜎𝜎12 to discover if the 
fit you found in part (a) is unique. You can save your parameters in the LS fit parameters 
table. Briefly discuss any fits that you found and comment on what you discovered. Use 
any format for your answer that you think works best. Don’t forget to save your best-fit 
spreadsheet for this question, we’ll be needing it later.  
(d) In part (c) of this question, the initial number infected was set to the value 𝑁𝑁0 = 5 that’s 
approximately the value you calculated using equation (12.59) for the UG model when 
fitted to the first 25 days. Investigate and briefly report on what happens if we set 𝑁𝑁0 = 2 
(the value obtained from the UG model fitted to the first 10 days).  
(e) Change the LS fit to include 𝑁𝑁0 as a parameter and find the LS “best-fit” values of the 
five parameters 𝑘𝑘1, 𝑘𝑘2, 𝑡𝑡12, 𝜎𝜎12 and 𝑁𝑁0 (this may take a while). By inspecting the “best-fit” 
semi-log graph, briefly explain why the fitted 𝑁𝑁0 value is pushed to such low values.  
Hint: What part of the USA data does the fit seem to match particularly well? 
Note: If the value of 𝑁𝑁0 does not change significantly, try a starting value of 𝑁𝑁0 ∈
{1, 0.1, 0.01} and record the values with the smallest 𝑄𝑄. You may have to run Solver 
multiple times. 
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Warning: Depending on the speed of your computer, this could take a while – at least a 
couple of minutes. 
(f) Based on what you discovered in Q.12.75, Q.12.77 and Q.12.78, report your “best” 
meaningful values of the model parameters, with an indication of their uncertainty. 

About what you discovered: don’t use too many parameters in a least-squares fit 
In Q.12.61 we discovered that it’s not wise to blindly use a least-squares (LS) fit for all the 
adjustable parameters of a model with more than two adjustable parameters. Adding extra 
parameters to the LS fit will always make the fit better (lower 𝑄𝑄), but you should always do a 
sanity check on the parameters that you obtain. The strategy I recommend (and that Q.12.75 and 
Q.12.77 follow) is to start with the minimum number of free parameters in your LS fit. If possible, 
use straight-forward, easy-to-explain-and-understand methods to estimate as many of the model 
parameters as possible first. Then add additional parameters to the LS fit as sparingly as possible. 
Making sure that the fitted values make sense at every step. Remember, our goal here is not to 
make the orange line go through all the data as accurately as possible – it’s to gain insights into 
what’s happening in the real system by fitting a simplified model to observed data. For example, 
in Q.12.78(e) I found 𝑁𝑁0 = 0.020, ℛ0 = 9.1, 𝑘𝑘1 = 1.9 d−1, 𝑘𝑘2 = 0.12 d−1, 𝑡𝑡12 = 10 d, 𝜎𝜎12 =
17 d using the LS fit method. Even though this is the “best-fit” that I found (smallest 𝑄𝑄 =
1,164,753,993), none of the parameters make physical sense! They’re clearly bogus and provide 
no insights into what’s happening in the real system – except to indicate that the model is not 
100% representative of the real system or the reported data – which is something that we already 
know! … people aren’t molecules. 
 
I think you could make an argument for using the fit in Fig.12.24 in preference to the any of the 
fits that you obtained in Q.12.75, Q.12.77 or Q.12.78. Not because it fits the data best – but 
because we have more confidence that the fitted parameters are meaningful. You could also make 
an argument for the fit in Q.12.75(c) because the procedure is the same as for Fig.12.24 
(Q.12.67(b)). My advice is to use the difference between the parameter values in Q.12.74(b) and 
Q.12.75(c) as an indication of the uncertainty in the fitted parameters. 
 
Like you, I discovered the fit in Q.12.78(a) after first going through the procedure outlined in 
Q.12.75 and Q.12.77. Considering what we learned in Q.12.75 and Q.12.77, we can now have 
more confidence in the fit shown in Fig.12.25. The parameter values seem to be reasonable. The 
peak in the 𝑆𝑆12(𝑡𝑡) curve (at 𝑡𝑡 = 𝑡𝑡12 ≈ 27 d) occurs near the middle of the linear transition period 
of the linear-scale 𝑅𝑅𝑖𝑖(𝑡𝑡) curve (from 𝑡𝑡 ≈ 20 d to 𝑡𝑡 ≈ 40 d). The value of 𝜎𝜎12 ≈ 12.3 d seems 
rather long. It predicts that the two-standard-deviation range (95%) of 𝑆𝑆12(𝑡𝑡) goes from day 2 
through day 52. As you saw from the 𝑘𝑘𝑖𝑖(𝑡𝑡) curve, the resulting infection rate coefficient 𝑘𝑘𝑖𝑖(𝑡𝑡) 
stayed near its initial value for about 10 days, which is consistent with what you discovered in 
Q.12.75(c) using the UG model. 
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Fig.12.25 Excel chart showing the fitted SIR model (solid line) to the USA data (open circles). SIR model  
parameters 𝑘𝑘1 = 0.60 d−1, 𝑘𝑘2 = 0.12 d−1, 𝑡𝑡12 = 27 d and 𝜎𝜎12 = 12.3 d were fit simultaneously using the  
least squares (LS) method. The remaining SIR model parameters were set to 𝑁𝑁 = 8.25 × 107, δ𝑡𝑡 = 1 d,  
𝜏𝜏𝑖𝑖 = 8 d and 𝑁𝑁0 = 5. The transition from 𝑘𝑘1 → 𝑘𝑘2 is modeled using a Gaussian (normal) distribution with  
mean 𝑡𝑡12 and standard deviation 𝜎𝜎12. The dotted line shows 𝑆𝑆12(𝑡𝑡), the probability density function (12.84)  
of the Gaussian transition function 𝐹𝐹12(𝑡𝑡) (12.83). Circled numbers indicate epochs ① and ② of the  
pandemic. Data source ECDC [2020]. 

 
As you discovered in Q.12.77(b) and Q.12.78(e) it doesn’t make sense to allow 𝑁𝑁0 to be a LS fit 
parameter because the resulting fit pushes 𝑁𝑁0 and 𝑡𝑡12 to unreasonably low values, and 𝑘𝑘1, ℛ0 and 
𝜎𝜎12 to unreasonably high values caused by the fit matching the data near day 20 better. As we 
discovered, deciding on a choice of fit can be more of an art than a science.  

 
Now that we have a fit of the SIR model to the USA data for the whole pandemic up to Memorial 
Day, let’s see what we can discover… 

Lives lost by delay in the US – revisited 
 

 Q.12.79  DISCUSSION QUESTION  (a) By changing the mean transition time from the value 
you found in Q.12.74(c) to 7 days earlier, use your spreadsheet to estimate how many lives 
could have been saved by Memorial Day (May 25) if social distancing etc. had been 
implement just 7 days earlier.  
Hint: You can do that by first calculating the number of infections saved and then use the 
observed crude mortality ratio 𝑚𝑚𝑐𝑐 = 0.0595 on May 25, 2020 to predict the number of 
lives saved.  
(b) By changing the mean transition time from the value you found in Q.12.78(c) to 7 days 
earlier, use your spreadsheet to estimate how many lives could have been saved by 
Memorial Day if social distancing etc. had been implement just 7 days earlier.  
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(c) Briefly discuss how your answers to parts (a) and (b) compare with the values in Table 
12.2 for the empirical fit in Fig.12.21. 

If you can do it there, you can do it anywhere …  
 

 
Fig.12.26 Excel chart showing infection rate data for New York City (NYC data – open circles) reported by 
NYC OpenData from February 29 to July 4, 2020. The solid line shows the prediction of the SIR model when 
fitted to the April 6 to May 25 (Memorial Day), 2020 data (data used in fit – orange dots) using the ED model 
– see Q.12.80. 

 
New York, New York – In late March 2020, the big apple was sickening from the inside out. 
Hospitals were reaching capacity and the infection rate was fast approaching 5,000 cases per day 
– see Fig.12.26. New York City (NYC) is the biggest city in the US with the highest population 
density making it an ideal breeding ground for the highly contagious SARS-CoV-2 virus. NYC 
was the epicenter of the initial COVID-19 outbreak in the US. The initial picture wasn’t pretty. It 
was up to New York to do something, and they did. In this subsection, we’ll investigate how the 
city that never sleeps was different from the US as a whole and then discover what would have 
happened, if the rest of the United States had decided to do it New York’s way.  
 

 Q.12.80  DISCUSSION QUESTION  Open the preformatted spreadsheet BPM.Ch12_NYC.xlsx. 
It contains the NYC data shown in Fig.12.26. The form of the spreadsheet is based on the 
one you used for Q.12.57. The NYC data table contains the infection rate 𝑅𝑅𝑖𝑖, hospitalization 
rate 𝑅𝑅𝐻𝐻 and the death rate 𝑅𝑅𝑚𝑚 data for NYC from March 29 through July 4, 2020. After 
confirming that you understand how the spreadsheet works, run Excel’s Solver with a Set 
Objective of $J$7, the cell for the quality of fit 𝑄𝑄 for April 6 through May 25, 2020 in the 
NYC data table; the To: radio button set to  Min; and By Changing Variable Cells: set to 
$J$3,$J$5, the cells for ED model parameters 𝑘𝑘𝑑𝑑 and 𝐴𝐴0. 
(a) Record the value of 𝑘𝑘𝑖𝑖 you obtained for NYC during social distancing. 
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(b) Record and comment on your linear-scale 𝑅𝑅𝑖𝑖(𝑡𝑡) graph for the SIR model for the 105 
days after April 6, 2020. 
 
 Q.12.81  DISCUSSION QUESTION  (a) Make a copy of the spreadsheet you saved for 
Q.12.74(c), then modify your spreadsheet to add a series to the 𝑅𝑅𝑖𝑖(𝑡𝑡) graph to show how 
the USA 𝑅𝑅𝑖𝑖(𝑡𝑡) would have changed if everyone behaved like New Yorkers, i.e., change 𝑘𝑘2 
to the value 𝑘𝑘𝑖𝑖 = 0.07838 d−1 you found for NYC in Q.12.80. Record your graph. 
(b) Make a copy of the spreadsheet you saved for Q.12.78(c), then modify your spreadsheet 
to add a series to the 𝑅𝑅𝑖𝑖(𝑡𝑡) graph to show how the USA 𝑅𝑅𝑖𝑖(𝑡𝑡) would have changed if 
everyone behaved like New Yorkers, i.e., change 𝑘𝑘2 to the value 𝑘𝑘𝑖𝑖 = 0.07838 d−1 you 
found for NYC in Q.12.80. Record your graph. 
(c) Use your results for parts (a) and (b) to estimate how many lives could have been saved 
from infection and death if everyone in the US did it NYC’s way.  
Hint: You can do that by first calculating the number of infections saved and then use the 
observed crude mortality ratio 𝑚𝑚𝑐𝑐 = 0.0595 on May 25, 2020 to predict the number of 
lives saved. Don’t forget to include the uncertainty of your estimate. 
(d) Compare the values of 𝑘𝑘2 for NYC with the 𝑘𝑘2 for the whole of the US during social 
distancing. 
Hint: Don’t forget to use what you learned from the “talking numbers” AWYD in 
CHAPTER 2. You might find the BPM.Ch02_Talking_numbers.xlsx preformatted 
spreadsheet useful. 
(e) Briefly explain why the USA model appears linear (on a linear-scale graph) during 
social distancing whereas the graph with the NYC 𝑘𝑘2 looks like an exponential decay.  
(f) Assume that the US population consists of two groups of people, (i) those that wear 
masks, socially distance and obey stay-at-home orders – and (ii) those that don’t. If we 
assume that everyone in NYC is in group (i) and followed the public health guidelines to 
the letter, what fraction of the whole US population would need to be in group (ii) and 
completely ignore (not follow) those public health guidelines to account for the increase in 
𝑘𝑘2 for the US as a whole compared with NYC?  
Hint: You can use 𝑘𝑘2 = 0.07838 d−1 for group (i) and 𝑘𝑘2 = 0.5207 d−1 for group (ii), 
which means that those in group (ii) infect others at the same rate as during the beginning 
of the initial outbreak.  
Note: The value of 𝑘𝑘2 = 0.5207 d−1 for group (ii) is the estimated continuous-time 
infection rate coefficient 𝑘𝑘𝑖𝑖 during the initial outbreak before social distancing, calculated 
from the discrete-time 𝑘𝑘1 using equations (12.85), (12.61) and (12.60). 

About what you discovered: if you can do it there, you can do it anywhere … 
Fig.12.27 shows my answer to Q.12.81(a) with an added arrow indicating the number of people 
that could have been saved from infection per day if the whole of the US had behaved like NYC 
wearing masks and following public health guidelines etc. Panel (a) is a semi-log plot and the 
linear appearance of both model curves after about day 40 (April 6) indicates the predicted 
exponential decay in the infection rates. The linear-scale plot in panel (b) clearly shows the more 
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rapid exponential decay if everyone wore masks etc. The reason that the USA SIR model still 
appears linear in panel (b) is because the half-life calculated using equations (12.70) and (12.65) 
is 𝑡𝑡½ ≈ 100 d, whereas the masks etc. curve has a half-life of 𝑡𝑡½ ≈ 15 d. The large value of the 
USA half-life compared with the timescale of the graph makes the exponential decay appear linear 
(see Fig.9.5). Whereas the much smaller value of the NYC half-life compared with the timescale 
of the graph explains why the full shape of the exponential decay is apparent. 
 

 

 
Fig.12.27 Excel chart showing the predictions of the SIR model (solid line) with a Gaussian transition function.  
The model parameters 𝑘𝑘1 = 0.603 d−1, 𝑘𝑘2 = 0.120 d−1, 𝑡𝑡12 = 27.0 d, and 𝜎𝜎12 = 12.3 d were obtained by  
least-squares fit to all the USA data from February 27 to May 25, 2020 inclusive (open circles) with 𝑁𝑁 = 
8.25 × 107, δ𝑡𝑡 = 1 d, 𝜏𝜏𝑖𝑖 = 8 d. The dashed line shows the prediction of the same model if the entire US had  
followed NYC’s lead with masks and social distancing etc., resulting in an infection rate constant of 𝑘𝑘2 = 
0.0784 d−1. (a) Semi-log graph illustrating the increased decay rate if everyone wore masks etc. (b) The same  
prediction on a linear-scale plot – clearly showing the non-linear shape of the predicted decrease. The estimate  
of 60,000+ lives lost by Memorial Day is based on the observed crude mortality ratio of 𝑚𝑚𝑐𝑐 = 0.0595. Data  
source ECDC [2020]. 
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The number of people saved from infection is the area between the two curves in panel (b). By 
comparing the estimates from Q.12.81(a) and (b) I came up with an estimate of 64,000 ± 5,000 
lives saved is the whole of the US had followed NYC’s lead with mask wearing etc. during the 
initial period of social distancing up to Memorial Day. As you discovered in Q.12.81(f), the loss 
of those lives can be explained by just 9% of the US population refusing to follow social 
distancing guidelines and wear masks etc.  

 
 Q.12.82  RESEARCH QUESTION  (a) The preformatted spreadsheet BPM.Ch12_NYC.xlsx 
contains the infection rate 𝑅𝑅𝑖𝑖, hospitalization rate 𝑅𝑅𝐻𝐻 and the mortality (death) rate 𝑅𝑅𝑚𝑚 data 
for NYC from March 29 through July 4, 2020. There are many things that you can discover 
by analyzing that data (and similar data from other states, countries, or regions). Using that 
data what can you discover about the time between the report of infection and 
hospitalization; hospitalization and death; the chance of getting out of hospital alive; the 
mortality ratio; and other ratios such as the hospitalization ratio. I was surprised by some 
of the things you can figure out just from the raw data.  
Note: The values you’ll obtain relate to the initial outbreak in NYC. Since then, the US 
medical profession has become much better at treating patients with severe COVID-19. 
(b) You could also investigate using a Gaussian transition function to fit the NYC data or 
data from other states, countries, or regions.  
Hint: For NYC, you might need to assume that the infection rate was under-reported during 
the peak from about day 20 to day 40. 

12.7 Cloudy with a chance of dragons  

Lifting social distancing – the butterfly and the dragon 
In this section we’ll talk about the consequences of reducing social distancing prematurely. When 
I first planned this section, the approach used was theoretical. Unfortunately, as of early 
September 2020, we now have published data that can be used to validate the approach – we’ll 
call this period of the pandemic in the US the summer surge.  
 
As you might recall, there was considerable political pressure placed on local leaders at the end 
of spring (i.e., in the weeks preceding and following Memorial Day – May 25, 2020) to open up 
their economies, to lift stay-at-home recommendations/orders and to allow activities inconsistent 
with maintaining social distancing. All the while, mask wearing had been politicized and was not 
universally mandated or even encouraged. 
 
Let’s start our analysis with data reported by the ECDC up to July 4, 2020, that represent the 
beginning of the summer surge. Open and inspect spreadsheet BPM.Ch12_Summer_dragon.xlsx. 
It’s an extension of the BPM.Ch12_Gaussian.xlsx spreadsheet that you analyzed in the previous 
section but with 𝑁𝑁 = 6.6 × 107 (20% of the actual US population). There are three new 
parameters in the Param$ column to model the third epoch (period) of the COVID-19 pandemic 
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in the US caused by lifting social distancing measures prematurely. The new parameter 𝑘𝑘3 [=] d−1 
is the infection rate constant in epoch ③, 𝑡𝑡23 is the mean transition time between epoch ② and 
epoch ③, and 𝜎𝜎23 is the standard deviation of the transition times between epochs ② and ③. 
The spreadsheet also includes a new column for 𝐹𝐹23(𝑡𝑡) and a new column for 𝑆𝑆23(𝑡𝑡). 𝐹𝐹12 and 𝐹𝐹23 
represent the transition functions between epochs, ① and ②, and epochs ② and ③ respectively, 
and 𝑆𝑆12 and 𝑆𝑆23 represent the probability densities of the corresponding normal (Gaussian) 
distributions. 𝐹𝐹12 and 𝑆𝑆12 are given by equations (12.83) and (12.84) and 𝐹𝐹23 and 𝑆𝑆23 are given 
by  
 
 𝐹𝐹23new = NORM. DIST(𝑡𝑡new, 𝑡𝑡23,𝜎𝜎23, TRUE) (12.87) 
and 
 𝑆𝑆23new = NORM. DIST(𝑡𝑡new, 𝑡𝑡23,𝜎𝜎23, FALSE) (12.88) 
 
The infection rate coefficient 𝑘𝑘𝑖𝑖 is now given by 
 
 𝑘𝑘𝑖𝑖new = 𝑘𝑘1 + 𝐹𝐹12new ∗ (𝑘𝑘2 − 𝑘𝑘1) + 𝐹𝐹23new ∗ (𝑘𝑘3 − 𝑘𝑘2) (12.89) 
 

 Q.12.83  DISCUSSION QUESTION  In spreadsheet BPM.Ch12_Summer_dragon.xlsx, complete 
the SIR model table by entering equations (12.87) and (12.88) in the columns for 𝐹𝐹23 and 
𝑆𝑆23 respectively. Then confirm that 𝑘𝑘𝑖𝑖 is given by equation (12.89). 
(a) Then adjust the values of the parameters 𝑘𝑘3, 𝑡𝑡23, and 𝜎𝜎23 by hand to make the SIR 
model match the beginning of the summer surge approximately. See if you can determine 
the best-fit values of 𝑘𝑘3 to the nearest 2 significant figures and 𝑡𝑡23 and 𝜎𝜎23 to the nearest 
day. Record your “by hand” estimates in the LS fit parameters table using Copy and Paste 
Values from cells T1:AB1. Then record them in your Word doc answer. 
(b) Now use Solver to find the least-squares best-fit values of 𝑘𝑘3, 𝑡𝑡23, and 𝜎𝜎23 
simultaneously and record you graph of 𝑅𝑅𝑖𝑖(𝑡𝑡) together with the graph of 𝑘𝑘𝑖𝑖(𝑡𝑡) and record 
the best-fit values in the LS fit parameters table. 
(c) Finally, use Solver to find the least-squares best-fit values of all of 𝑘𝑘1, 𝑘𝑘2, 𝑡𝑡12, 𝜎𝜎12, 𝑘𝑘3, 
𝑡𝑡23, and 𝜎𝜎23 simultaneously and record your graph of 𝑅𝑅𝑖𝑖(𝑡𝑡) together with the graphs of 
𝑆𝑆12(𝑡𝑡) and 𝑆𝑆23(𝑡𝑡), and record the best-fit values of 𝑘𝑘3, 𝑡𝑡23, and 𝜎𝜎23 in the LS fit parameters 
table. 
(d) Record the LS fit parameters table of your answers to parts (a), (b) and (c). 
(e) Quantitatively discuss the significance of your fitted parameters. 

About what you discovered: America unmasked – the exponential dragon returns 
As you discovered in Q.12.83, the beginning of the summer surge can be modeled by a change in 
the infection rate coefficient from 𝑘𝑘𝑖𝑖 = 𝑘𝑘2 = 0.120 d−1 to 𝑘𝑘𝑖𝑖 = 𝑘𝑘3 = 0.179 d−1 with a mean 
transition time of 𝑡𝑡23 = 113 d and standard deviation 𝜎𝜎23 = 7.2 d. Fig.12.28 shows my answer to 
Q.12.83(c) with some additional series (not asked for) indicating Memorial Day and July 4th. As 
you discovered, an increase of about 50% in the infection rate coefficient can account for the 
rather dramatic change in qualitative behavior of 𝑅𝑅𝑖𝑖(𝑡𝑡) from gradual exponential decay back to 
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rapid exponential growth. If we follow the procedure of Q.12.81(f) we can an estimate that only 
12% of people abandoning social distancing can account for the emergence of the summer dragon.  

 

 

 
Fig.12.28 (a) & (b) Excel charts showing the predictions of the SIR model (solid orange line) when  
fitted to USA data reported as confirmed cases per day by the ECDC (blue open circles) for three epochs –  
① the initial exponential growth, the period ② of social distancing, and ③ the relaxation of social  
distancing following Memorial Day. The vertical dashed lines indicate Memorial Day (May 25, 2020 –  
dashed line) and July 4th (dash-dot line). The arrow points to the nose of the exponential dragon caused  
by premature relaxation of social distancing etc. Panel (a) also includes the infection rate coefficient 𝑘𝑘𝑖𝑖(𝑡𝑡) 
on the secondary vertical axis. Panel (b) shows the transition time distributions 𝑆𝑆12 and 𝑆𝑆23 for the transition  
times 𝑡𝑡12 and 𝑡𝑡23. 

 
Fig.12.28(a) shows the infection rate coefficient as a function of time 𝑘𝑘𝑖𝑖(𝑡𝑡) on the secondary axis 
(right). As shown, only a relatively small change in 𝑘𝑘𝑖𝑖(𝑡𝑡) accounts for the rather dramatic change 
in the infection rate following Memorial Day. Fig.12.28(b) shows the corresponding graphs of the 
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probability densities – 𝑆𝑆12 for the transition time 𝑡𝑡12 and 𝑆𝑆23 or the transition time 𝑡𝑡23 from epoch 
② to epoch ③. The graph of 𝑆𝑆23(𝑡𝑡) is particularly interesting because it highlights a feature of 
the fitted model that’s not immediately obvious in the 𝑅𝑅𝑖𝑖(𝑡𝑡) graph – namely that the mean 
transition time is well after Memorial Day and that the transition is basically complete by the 4th 
of July weekend. Hence, if reports in the popular press are correct that changes in behavior over 
Memorial Day weekend really were the cause of the summer dragon then the delay between cause 
and average effect is (113 d) − (89 d) = 24 d or over three weeks! Unfortunately, further 
investigation of this fascinating topic is beyond the scope of this chapter. However, one thing that 
you should recall is that the SIR model doesn’t include a box (exposed) to represent those recently 
infected who are not yet infectious. Hence, our SIR model doesn’t explicitly include any 
incubation period. As we’ve mentioned before, the jumps from box 𝑠𝑠 → 𝑖𝑖 are not required to occur 
instantaneously. The SEIR model, where the 𝐸𝐸 stands for exposed, is the simplest model that 
accounts for that effect.  
 

 Q.12.84  DISCUSSION QUESTION  Copy your 𝑅𝑅𝑖𝑖(𝑡𝑡) graph and then extend it to show the full 
predicted summer dragon. Then record your model predictions on: 
(a) a linear-scale graph; and 
(b) a semi-log graph. 
(c) Then briefly comment on what you discovered. 
(d) RESEARCH QUESTION  Investigate and report on how your results depend on 𝑁𝑁 and 𝜏𝜏𝑖𝑖. 

About what you discovered: here be dragons! 
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Fig.12.29 Excel chart showing the predictions of the SIR model (solid orange line) when fitted to USA data  
reported as confirmed cases per day by the ECDC (open blue circles) for three epochs – ① the initial  
exponential growth, ② the period of social distancing, and ③ the relaxation of social distancing following  
Memorial Day. (a) Linear-scale plot showing the complete exponential dragon. (b) Semi-log graph illustrating  
the dragon’s exponential head and accentuating its long exponential tail, cf. Fig.12.15. 
Note: This estimate based on 20% of the US population (𝑁𝑁 = 6.6 × 107) being included in the model  
and it assumes that the model parameters stop changing after July 4, 2020, which was not true.  
Also note: The inverted vee (Λ) shape of the dragon’s head in the semi-log graph in Fig.12.29(b) that we  
first noted in Fig.12.15. The peak value is not well-determined. It can range from about 𝑅𝑅𝑖𝑖 = 200,000 d−1  
to about 𝑅𝑅𝑖𝑖 = 1,000,000 d−1, simply by changing the size 𝑁𝑁 of the model population (see Q.12.47). 

 

The summer surge and the butterfly 
Thankfully, people in the US didn’t let the summer dragon continue to grow unabated. Social 
distancing mandates were reinstated in various states and the net result was that the exponential 
dragon was suppressed before the long-term predictions of Fig.12.29 came reality. In this 
subsection, we’ll analyze what actually happened and analyze the response using our fitted model. 
Spoiler alert: I was quite surprised by what the analysis revealed about the nature of the response.  
 
Open and inspect spreadsheet BPM.Ch12_Summer_surge.xlsx. It’s an extension of the 
BPM.Ch12_Summer_dragon.xlsx spreadsheet that you analyzed in Q.12.83 and Q.12.84. I added 
three new parameters in the Param$ column to model the fourth epoch of the COVID-19 pandemic 
in the US caused by reimposing social distancing measures and more responsible behavior by 
younger people. Parameter 𝑘𝑘4 [=] d−1 is the infection rate constant in epoch ④, 𝑡𝑡34 is the mean 
transition time between epoch ③ and epoch ④, and 𝜎𝜎34 is the standard deviation of the transition 
times between epochs ③ and ④. The spreadsheet also includes two new columns: 𝐹𝐹34 represents 
the transition function between epochs ③ and ④, and 𝑆𝑆34 represents the probability density of 
the corresponding normal (Gaussian) distribution. 𝐹𝐹12, 𝑆𝑆12, 𝐹𝐹23 and 𝑆𝑆23 are given by are given by 
equations (12.83), (12.84), (12.87) and (12.88). 𝐹𝐹34 and 𝑆𝑆34 are given by  
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 𝐹𝐹34new = NORM. DIST(𝑡𝑡new, 𝑡𝑡34,𝜎𝜎34, TRUE) (12.90) 
and 
 𝑆𝑆34new = NORM. DIST(𝑡𝑡new, 𝑡𝑡34,𝜎𝜎34, FALSE) (12.91) 
 
The infection rate coefficient 𝑘𝑘𝑖𝑖 is now given by 
 
 𝑘𝑘𝑖𝑖new = 𝑘𝑘1 + 𝐹𝐹12new ∗ (𝑘𝑘2 − 𝑘𝑘1) + 𝐹𝐹23new ∗ (𝑘𝑘3 − 𝑘𝑘2) + 𝐹𝐹34new ∗ (𝑘𝑘4 − 𝑘𝑘3) (12.92) 
 

 Q.12.85  DISCUSSION QUESTION  In spreadsheet BPM.Ch12_Summer_surge.xlsx, complete 
the SIR model table by entering equations (12.90), (12.92) and (12.91) in the columns for 
𝐹𝐹34, 𝑘𝑘𝑖𝑖 and  𝑆𝑆34 respectively.   
(a) Then adjust the values of the parameters 𝑘𝑘4, 𝑡𝑡34, and 𝜎𝜎34 by hand to make the SIR 
model match the downslope of the summer surge approximately. See if you can determine 
the best-fit values of 𝑘𝑘4 to the nearest 2 significant figures and 𝑡𝑡34 and 𝜎𝜎34 to the nearest 
day. Record your “by hand” estimates in the LS fit parameters table using Copy and Paste 
Values from cells V1:AC1.  
Note: In part (c) you’ll be asked to record your LS fit parameters table for parts (a) through 
(c) as a single table in your Word doc answer. 
(b) Now use Solver to find the least-squares best-fit values of 𝑘𝑘4, 𝑡𝑡34, and 𝜎𝜎34 
simultaneously and record the best-fit values in your LS fit parameters table. 
(c) Finally, use Solver to find the least-squares best-fit values of all of 𝑘𝑘3, 𝑡𝑡23, 𝜎𝜎23, 𝑘𝑘4, 𝑡𝑡34, 
and 𝜎𝜎34 and record the best-fit values of 𝑘𝑘3, 𝑡𝑡23, and 𝜎𝜎23 in your LS fit parameters table. 
Record your LS fit parameters table to answer parts (a) – (c) simultaneously.  
(d) Record your graph of 𝑅𝑅𝑖𝑖(𝑡𝑡) together with the graph of 𝑘𝑘𝑖𝑖(𝑡𝑡). 
(e) Record your graph of 𝑅𝑅𝑖𝑖(𝑡𝑡) together with the graphs of 𝑆𝑆12(𝑡𝑡) and 𝑆𝑆23(𝑡𝑡). 
(f) Quantitatively discuss the significance of your fitted parameters. Pay particular attention 
to 𝑘𝑘4 and how it compares with 𝑘𝑘2. 

About what you discovered: The summer surge unmasked 
As you discovered in Q.12.85, the summer surge can be explained by a small increase in the 
infection rate coefficient 𝑘𝑘𝑖𝑖 centered on June 17th followed by a small decrease centered on July 
20th (Fig.12.30). Interestingly, the mean time for the increase is just over three weeks (23 days) 
after Memorial Day and the mean time for the decrease is 16 days after July 4th. As you can see 
in Fig.12.30(a) that means that the fourth of July holiday weekend occurred approximately in the 
middle of epoch ③. As shown in Fig.12.30(a), the SIR model infection rate coefficient 𝑘𝑘𝑖𝑖 stayed 
approximately constant in the weeks preceding and following July 4th. This description is quite 
different from comments in the popular press that stated that the Memorial Day and July 4th 
holiday weekends were the main causes of the summer surge.  
 
Another thing that you should have noticed and commented on was that the infection rate 
coefficient in epoch ④, 𝑘𝑘4 = 0.121 d−1 is almost the same as 𝑘𝑘2 = 0.123 d−1, actually 2% 
higher. That surprised me. The slope of the decrease in epoch ④ is clearly steeper than the slope 
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in epoch ②. Hence, my naïve expectation was that 𝑘𝑘4 would significantly less than 𝑘𝑘2, which 
would have indicated that Americans were finally implementing social distancing and mask 
wearing etc. better than they did during epoch ② – but I was mistaken! The fitted model isn’t 
consistent with that interpretation as the infection rate constant 𝑘𝑘4 for epoch ④ is approximately 
the same as 𝑘𝑘2 for epoch ②, which indicates that the effectiveness of social distancing/mask 
wearing etc. were essentially the same during epochs ② and ④ on average across the US taken 
as a whole. 

 

 
Fig.12.30 Excel chart showing the predictions of the SIR model (solid orange line) when fitted to USA data  
reported as confirmed cases per day by the ECDC (blue circles) up to Labor Day (September 7, 2020) for  
four epochs of the pandemic (circled numbers) – ① the initial exponential growth, ② the epoch of social  
distancing, ③ the relaxation of social distancing following Memorial Day, and ④ the return to social  
distancing following July 4th. The vertical dashed lines indicate Memorial Day and July 4th. The graph also  
includes the infection rate coefficient 𝑘𝑘𝑖𝑖(𝑡𝑡) (green dotted line) on the secondary vertical axis. Data source  
ECDC [2020]. 

 

http://circle4.com/biophysics


Chapter 12: COVID-19 and epidemiology (web edition) Page 88 of 124  v.4.4 © Peter Hugo Nelson 2023 
 

 Biophysics and Physiological Modeling Page 88 of 124    http://circle4.com/biophysics 

 
 Q.12.86  DISCUSSION QUESTION  Copy your 𝑅𝑅𝑖𝑖(𝑡𝑡) graph and then extend it to show the full 
predicted summer dragon. Then record your model predictions on: 
(a) a linear-scale graph; and 
(b) a semi-log graph. 
(c) Then briefly comment on what you discovered. 
(d) RESEARCH QUESTION  Investigate and report on how your results depend on 𝑁𝑁 and 𝜏𝜏𝑖𝑖. 

12.8 Model population size and the fall dragon  

Model population size 
In this section we’re going to investigate how model population size 𝑁𝑁 affects the SIR model with 
variable 𝑘𝑘𝑖𝑖 that we’ve been developing. On January 19, 2021, the CDC released a report 
estimating that only 1 in 4.6 (95% UI 4.0 – 5.4) of total COVID-19 infections were reported in 
the period from February–December 2020 (18,19). Rounding up to one significant figure, that 
means only about 1 in 5 (or 20%) of actual COVID-19 infections appear in the reported data that 
we’ve been analyzing. Comparing the model predictions with reported data is central to our 
modeling exercise. Hence, let’s start by making our estimate of the model population size match 
up with the CDC estimate. The simplest way to do that is to make the model population size be 
𝑞𝑞 ≈ 20% of the actual US population, where 𝑞𝑞 is defined as 
 

 𝑞𝑞 ≡
𝑁𝑁
𝑁𝑁⋆ (12.93) 

 
where 𝑁𝑁 is the model population size and 𝑁𝑁⋆ = 3.3 × 108 is the estimated actual population of 
the United States. Hence, the model population size can be calculated as 𝑁𝑁 = 𝑞𝑞𝑁𝑁⋆, so that when 
𝑞𝑞 = 20%, then 𝑁𝑁 = 6.6 × 107.  

The fall dragon 
Open and inspect spreadsheet BPM.Ch12_Fall_dragon.xlsx. It’s an extension of the 
BPM.Ch12_Summer_surge.xlsx spreadsheet that you analyzed in Q.12.85 and Q.12.86. It now 
extends to Thanksgiving Day – November 26, 2020. It now includes the parameter 𝑞𝑞 as a 
calculated parameter using equation (12.93) and I added three new parameters (𝑘𝑘5, 𝑡𝑡45, 𝜎𝜎45) in the 
Param$ column to model the fifth epoch of the COVID-19 pandemic in the US caused by 
loosening of social distancing measures and continued opposition to mask wearing in the lead up 
to the 2020 US Presidential elections. 
 
On December 14, 2020, the ECDC discontinued providing daily data. Hence, the spreadsheet 
contains daily data from a different source – Our World in Data 
https://ourworldindata.org/coronavirus/country/united-states [OWID 2022a]. They report data in 
spreadsheet form from Johns Hopkins University. Those data are slightly different from the ECDC 
data we’ve used previously. Hence, I redid the fit in spreadsheet BPM.Ch12_Fall_dragon.xlsx. 
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The spreadsheet also includes new columns for 𝐹𝐹45, 𝑠𝑠 and 𝑆𝑆45. I’ve included instructions for 𝑠𝑠 and 
𝑆𝑆45., you’ll compete the column for 𝐹𝐹45 in Q.12.87(b). In part (d) of Q.12.87 we’ll investigate 
how changing the model population size affects the model. As we’ll discover, the size of the model 
population – as indicated by 𝑞𝑞 – is a key parameter affecting the model’s predictions after 
Thanksgiving Day (November 26, 2020). The susceptible fraction 𝑠𝑠 ≡ 𝑁𝑁𝑠𝑠/𝑁𝑁 (12.9) is inversely 
proportional to 𝑁𝑁, and as we’ll discover, it provides key insights into how 𝑁𝑁 (or 𝑞𝑞) affects the 
model. That’s why I added the column for 𝑠𝑠 in the SIR model table and I added an entry for 𝑠𝑠Thx, 
the value of 𝑠𝑠 on Thanksgiving Day, in the LS fit parameters table. I also added columns for 𝑠𝑠𝑝𝑝,5 
and Δ𝑠𝑠, which we’ll discuss in Q.12.90. 
 

 Q.12.87  DISCUSSION QUESTION  (a) Using equation (12.9) write out an instruction for 𝑠𝑠, and 
by generalizing equations (12.90), (12.92) and (12.91) write out algorithm instructions for 
𝐹𝐹45, 𝑘𝑘𝑖𝑖, and  𝑆𝑆45. 
(b) In spreadsheet BPM.Ch12_Fall_dragon.xlsx, confirm that the equations for 𝑘𝑘𝑖𝑖, 𝑠𝑠 and 
𝑆𝑆45 are implemented correctly then complete the SIR model table by entering your 
instruction for 𝐹𝐹45. Then adjust the values of the parameters 𝑘𝑘5, 𝑡𝑡45, and 𝜎𝜎45 by hand to 
make the SIR model match the nose of the fall dragon. By monitoring the value of 𝑄𝑄, 
determine the best-fit values of: 𝑘𝑘5 to the nearest 2 significant figures; and the best-fit 
values of 𝑡𝑡45 and 𝜎𝜎45 to the nearest day. Record your “by hand” estimates in the LS fit 
parameters table using Copy and Paste Values from cells Y1:AG1. 
Note: In part (f) you’ll be asked to record your LS fit parameters table for parts (b) through 
(f) as a single table in your Word doc answer. 
(c) Now use Solver to find the least-squares best-fit values of 𝑘𝑘5, 𝑡𝑡45, and 𝜎𝜎45 
simultaneously and record the best-fit values in your LS fit parameters table. 
(d) Change value of the model population to 𝑁𝑁 = 1.32 × 108 (𝑞𝑞 = 40% of the actual US 
population) then use Solver to find the least-squares best-fit values of all of 𝑘𝑘1,𝑘𝑘2,
𝑡𝑡12,𝜎𝜎12,𝑘𝑘3, 𝑡𝑡23,𝜎𝜎23, 𝑘𝑘4, 𝑡𝑡34, 𝜎𝜎34, 𝑘𝑘5, 𝑡𝑡45, and 𝜎𝜎45 and record the best-fit values in your LS 
it parameters table. Don’t forget to save this spreadsheet, you’ll need it later. 
(e) Change value of the model population back to 𝑁𝑁 = 6.6 × 107 (𝑞𝑞 = 20% of the actual 
US population) then use Solver to find the least-squares best-fit values of all of 𝑘𝑘1,𝑘𝑘2,
𝑡𝑡12,𝜎𝜎12,𝑘𝑘3, 𝑡𝑡23,𝜎𝜎23, 𝑘𝑘4, 𝑡𝑡34, 𝜎𝜎34, 𝑘𝑘5, 𝑡𝑡45, and 𝜎𝜎45 and record the best-fit values in your LS 
fit parameters table. Don’t forget to save this spreadsheet, you’ll need it later.  
Note: Coming back to 𝑞𝑞 = 20% tests the convergence of the LS fit.  
(f) Change value of the model population to 𝑁𝑁 = 3.3 × 107 (𝑞𝑞 = 10% of the actual US 
population) then use Solver to find the least-squares best-fit values of all of 𝑘𝑘1,𝑘𝑘2,
𝑡𝑡12,𝜎𝜎12,𝑘𝑘3, 𝑡𝑡23,𝜎𝜎23, 𝑘𝑘4, 𝑡𝑡34, 𝜎𝜎34, 𝑘𝑘5, 𝑡𝑡45, and 𝜎𝜎45 and record the best-fit values in your LS 
fit parameters table. Don’t forget to save this spreadsheet, you’ll need it later. Record the 
LS fit parameters table of your answers to parts (b) – (f) in your Word doc answer. (You 
can copy and “paste as picture” into Word.) 
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 Q.12.88  DISCUSSION QUESTION  (a) Using your spreadsheet answer for Q.12.87(e) with 𝑞𝑞 =
20%, record your graph of 𝑅𝑅𝑖𝑖(𝑡𝑡) together with the graph of 𝑘𝑘𝑖𝑖(𝑡𝑡) up to day 𝑡𝑡 = 400 d for 
𝑞𝑞 = 20% (𝑁𝑁 = 6.6 × 107). 
(b) Also record your semi-log graph of 𝑅𝑅𝑖𝑖(𝑡𝑡) together with the graphs of 𝑆𝑆12(𝑡𝑡) through 
𝑆𝑆45(𝑡𝑡) up to day 𝑡𝑡 = 400 d for 𝑞𝑞 = 20% (𝑁𝑁 = 6.6 × 107). 
(c) Using your spreadsheet answers to Q.12.87(d)-(f), briefly summarize the visible effect 
of changing the percentage 𝑞𝑞 of people in the model population on the fitted model in the 
period up to Thanksgiving Day, then  
(d) Briefly summarize the effect of changing 𝑞𝑞 on the predictions of the model after 
November 26, 2020.  
(e) Briefly compare the values of 𝑘𝑘5 for the different values of 𝑞𝑞 and discuss what you can 
conclude. 

About what you discovered: the fall dragon and population size 
 

 
Fig.12.31 Excel chart showing the predictions of the SIR model when fitted to five different epochs –  
① the initial exponential growth, ② the period of social distancing, ③ the relaxation of social distancing  
following Memorial Day, ④ the return to social distancing following July 4th, and ⑤ the fall surge  
following Labor Day (September 7, 2020). The blue open circles show the USA data reported as confirmed  
cases per day by OWID up to Thanksgiving (November 26, 2020). The solid orange line represents a model  
population of 𝑞𝑞 = 20% of the actual US population. The orange dashed lines represent the fitted model  
predictions for model populations of 𝑞𝑞 = 10% (lower) and 𝑞𝑞 = 40% (higher) of the actual US population.  

 
Fig.12.31 graphically summarizes your answers to Q.12.87(d)-(f) and Q.12.88 (you were not 
expected to reproduce Fig.12.31). It shows the predictions of the fitted SIR model for the fall 
exponential dragon for different model population sizes corresponding to 𝑞𝑞 = 10%, 20%, and 
40% of the actual US population (𝑁𝑁 = 3.3 × 107, 6.6 × 107, and 1.32 × 108 respectively). As 
you discussed in Q.12.88(c), changing the model population size has no visible effect on the fitted 
model up to Thanksgiving Day even though the fitted infection rate constants (𝑘𝑘1 − 𝑘𝑘5) are 

http://circle4.com/biophysics
https://ourworldindata.org/coronavirus-source-data


Chapter 12: COVID-19 and epidemiology (web edition) Page 91 of 124  v.4.4 © Peter Hugo Nelson 2023 
 

 Biophysics and Physiological Modeling Page 91 of 124    http://circle4.com/biophysics 

different for the three fitted models (Fig.12.31). However, the model predictions for the fall 
exponential dragon almost immediately diverge depending on the size of the model population. 
 
As you discovered in Q.12.88(e) the fitted value of 𝑘𝑘5 = 0.23 d−1 for 𝑞𝑞 = 10% is clearly higher 
than the other two fits. Because its peak occurs soon after Thanksgiving, 𝑞𝑞 = 10% is just about 
the smallest model population size that’s consistent with the data up to November 26, 2020 
(Fig.12.31). We’ll analyze data after Thanksgiving in the next section. However, before we do 
that, there’s an interesting question posted by the fits shown in Fig.12.31 – why do the fits all 
match up to Thanksgiving, but then diverge almost immediately? It’s as if the population size 
doesn’t seem to matter up to Thanksgiving, but then suddenly it does! As a scientific modeler you 
should ask yourself – why is that? We’ll discuss that important question in Q.12.90 below. As a  
CHALLENGE QUESTION , see if you can provide an explanation using the tabulated data you recorded 
for Q.12.87(b)-(f).  
 

 Q.12.89  DISCUSSION QUESTION  (a) For your fitted model in Q.12.87(e) with 𝑞𝑞 = 20%, 
compare the values of 𝑘𝑘5 for the fall dragon with the value of 𝑘𝑘3 for summer dragon. 
Hint: Don’t forget to use what you learned from the “talking numbers” AWYD in 
CHAPTER 2. You might find the BPM.Ch02_Talking_numbers.xlsx preformatted 
spreadsheet useful. 
(b) Briefly discuss the significance of your comparison in part (a), focusing on the percent 
difference between 𝑘𝑘3 and 𝑘𝑘5. 
(c) Compare the value of 𝑘𝑘4 with the value of 𝑘𝑘2 for 𝑞𝑞 = 20%.  
(d) Briefly discuss the significance of your comparison in part (c). 

About what you discovered: stricter and more relaxed social distancing  
As you discovered in Q.12.89(a)&(b), the fits with a model population of 𝑞𝑞 = 20% of the actual 
US population have an infection rate constant for the fall dragon (𝑘𝑘5 in epoch ⑤) that’s within 
±5% of the corresponding value for the summer dragon (𝑘𝑘3 in epoch ③). In Q.12.89(c)&(d) you 
discovered that the fits with 𝑞𝑞 = 20% have an infection rate constant for 𝑘𝑘4 in epoch ④ that’s 
within about ±2% of the corresponding value for 𝑘𝑘2 in epoch ②. That suggests that the behavior 
of the US population – after the initial outbreak (with 𝑞𝑞 ≈ 20%) – can be separated into two 
classes stricter social distancing and relaxed social distancing. Epochs ② and ④ correspond 
to stricter social distancing with 𝑘𝑘2 ≈ 𝑘𝑘4 = 0.122 ± 0.001 d−1 and epochs ③ and ⑤ correspond 
to more relaxed social distancing with 𝑘𝑘3 ≈ 𝑘𝑘5 = 0.178 ± 0.004 d−1. Hence, the inception of 
both the summer and fall surges can be explained by a modest 30% increase in the infection rate 
coefficient 𝑘𝑘𝑖𝑖. Personally, I found this conclusion to be quite remarkable given the diversity of 
public health responses in individual states that make up the Union. This is a good example of the 
insights that can be gained from simple models.  

Why does model population size matter after Thanksgiving but not before? 
We’re now going to investigate an important question raised by the fits in Fig.12.31. Why do the 
fits match each other before Thanksgiving, but then diverge almost immediately? As we noted 
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above, it’s as if the population size doesn’t matter up to Thanksgiving, but then suddenly … it 
does! Whenever a simple model does something apparently unexpected, it’s always worthwhile 
trying to figure out why. The insights provided are usually worth the effort. Let’s see what we can 
discover …  
 

 Q.12.90  DISCUSSION QUESTION  Using your spreadsheet answers to Q.12.87(d)(e)&(f),  
(a) Tabulate the values of 𝑞𝑞, 𝑠𝑠Thx,𝑘𝑘4,𝑘𝑘5, 𝑠𝑠𝑝𝑝,5 = 𝑘𝑘𝑟𝑟/𝑘𝑘5 (12.27) and the quantity Δ𝑠𝑠 =
𝑠𝑠Thx − 𝑠𝑠𝑝𝑝,5.  
Hint: You can copy (as values) the LS fit parameters table and then delete the columns 
that you don’t want. You can then copy the table into word. 
(b) Calculate the average and range of the values of 𝑘𝑘5 for the models with 𝑞𝑞 = 20% and 
40% and compare them with 𝑘𝑘5 for 𝑞𝑞 = 10%. 
(c) Using the values of Δ𝑠𝑠 for the three values of 𝑞𝑞 briefly explain why the predicted peak 
for 𝑞𝑞 = 10% occurs so soon after Thanksgiving and why the predicted peaks for 𝑞𝑞 = 20% 
and 𝑞𝑞 = 40% occur at successively later times. 
Note: The 𝑠𝑠𝑝𝑝 gives the value of 𝑠𝑠 at the peak in 𝑁𝑁𝑖𝑖(𝑡𝑡), which soon occurs after the peak in 
𝑅𝑅𝑖𝑖(𝑡𝑡) – see Fig. 12.12(b).  

About what you discovered: population size matters because … 
During epoch ⑤, the fitted the fitted values of the infection rate constant are 𝑘𝑘5 = 0.23, 0.18 and 
0.17 d−1 for models with 𝑞𝑞 = 10%, 20%, and 40%, respectively. The two infection rate 
constants for 𝑞𝑞 = 20% and 40% are approximately the same with an average of 𝑘𝑘5 = 0.174 ±
0.008. Hence, the large difference between 𝑞𝑞 = 20% and 40% in Fig.12.31 can’t be explained 
by the modest difference in the infection rate constants. 
 
Susceptible fraction left at Thanksgiving  
The third peak in the pandemic predicted in Fig.12.31 is the first peak in the fitted model that 
corresponds to the exponential dragon predicted by the SIR model. The 𝑁𝑁𝑖𝑖 peak is predicted to 
occur when 𝑠𝑠 = 𝑘𝑘𝑟𝑟/𝑘𝑘5 = 𝑠𝑠𝑝𝑝,5 but the fitted susceptible fractions at Thanksgiving 𝑠𝑠Thx get larger 
as 𝑞𝑞 is increased, meaning that there are more susceptible people left at Thanksgiving, so it takes 
longer to reach the peak in the fall dragon. The susceptible fractions remaining at Thanksgiving 
are 𝑠𝑠Thx = 0.607, 0.803 and 0.902 for model population sizes of 𝑞𝑞 = 10%, 20% and 40%, 
respectively. The corresponding values of the predicted peak values are 𝑠𝑠𝑝𝑝,5 = 0.542, 0.684 and 
0.752, respectively, indicating that the predicted peak in 𝑁𝑁𝑖𝑖(𝑡𝑡) gets further away from the value 
of the susceptible fraction at Thanksgiving 𝑠𝑠Thx (as measured by the quantity Δ𝑠𝑠 =  𝑠𝑠Thx − 𝑠𝑠𝑝𝑝,5 =
0.065, 0.12 and 0.15, respectively). Recall that the susceptible fraction 𝑠𝑠 must always decrease 
in the SIR model because once an individual is infected, they’re permanently removed from the 
susceptible box. Hence, for 𝑞𝑞 = 10%, 𝑠𝑠 only needs to decrease by Δ𝑠𝑠 = 0.065 (from 0.607 to 
0.542) for the model to reach the 𝑁𝑁𝑖𝑖(𝑡𝑡) peak in the fall dragon. For the model with 𝑞𝑞 = 20%, the 
susceptible fraction needs to decrease by Δ𝑠𝑠 = 0.12 for the model to reach the 𝑁𝑁𝑖𝑖(𝑡𝑡) peak in the 
fall dragon. For 𝑞𝑞 = 40% the susceptible fraction needs to decrease by Δ𝑠𝑠 = 0.15. In addition, 
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for larger values of 𝑞𝑞, more infections need to be reported for 𝑠𝑠 to decrease by the same amount. 
 

Model validation 
 

 Q.12.91  DISCUSSION QUESTION  Using your spreadsheet from Q.12.87(f), change value of 
the model population to 𝑁𝑁 = 7.16 × 107 (𝑞𝑞 = 21.7% of the actual US population, which 
corresponds to the estimate in the CDC report dated January 19, 2021 [CDC 2021a]) then 
use Solver to find the least-squares best-fit values of all of 𝑘𝑘1,𝑘𝑘2,
𝑡𝑡12,𝜎𝜎12,𝑘𝑘3, 𝑡𝑡23,𝜎𝜎23, 𝑘𝑘4, 𝑡𝑡34, 𝜎𝜎34, 𝑘𝑘5, 𝑡𝑡45, and 𝜎𝜎45 and record the best-fit values in your LS 
fit parameters table. Don’t forget to save this spreadsheet, you’ll need it later.  
(a) Record your graph of 𝑅𝑅𝑖𝑖(𝑡𝑡) together with the graph of 𝑘𝑘𝑖𝑖(𝑡𝑡) up to day 𝑡𝑡 = 400 d. 
(b) Record your semi-log graph of 𝑅𝑅𝑖𝑖(𝑡𝑡) together with the graphs of 𝑆𝑆12(𝑡𝑡) through 𝑆𝑆45(𝑡𝑡). 

 
Open and inspect spreadsheet BPM.Ch12_Model_validation.xlsx. It’s an extension of the 
BPM.Ch12_Fall_dragon.xlsx spreadsheet that you analyzed in Q.12.91. In addition to the data up 
to Thanksgiving Day (November 26, 2020), it also includes additional USA data up to February 
14, 2021, that have not yet been plotted. Our plan is to test the predictions of the SIR model for 
the fall dragon from Thanksgiving through the holiday period up to February 14, 2021. The solid 
orange line in the spreadsheet chart shows the predictions of the SIR model fitted up to 
Thanksgiving Day (November 26, 2020) with 𝑁𝑁 = 7.16 × 107 or 𝑞𝑞 = 21.7%. It’s important to 
note that it’s the same fit that you made in Q.12.91 – you should check that your model parameters 
match those in the preformatted spreadsheet. 
Note: In the preformatted spreadsheet, I used the Excel Freeze Panes option to freeze Row 1, Row 
2, and Column A of the spreadsheet – see View > Freeze Panes or look up Freeze Panes in Excel’s 
Help.  
 

 Q.12.92  DISCUSSION QUESTION  In the preformatted spreadsheet, use Select Data… to plot 
the unfitted data from November 27, 2020, up to February 14, 2021. You can do that by 
Editing the unfitted data series and changing the end point of the Series X values from 
$D$278 to $D$357 and changing the end point of the Series Y values from $P$278 to 
$P$357. You should now see the unfitted data up to February 14, 2021, plotted as grey 
diamonds. Briefly discuss what you can conclude from the graph, i.e., how well does the 
SIR model predict the unfitted data from November 27, 2020, up to February 14, 2021? 

 
Because the unfitted data you just plotted show large fluctuations over the 2020-2021 holiday 
season, the preformatted spreadsheet also includes a <7-day> column in column S of the 
spreadsheet, it contains a moving 7-day average of the OWID data. You should inspect cell S7 in 
the Formula bar and make sure that you understand how the formula for the centered moving 
average [NIST 2021] works. It’s a 7-day average that’s centered on the current day. This can be 
contrasted with Excel’s build-in Moving Average trendline (with Period [7]), which is an average 
of the seven days leading up to and including the current day.  
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 Q.12.93  DISCUSSION QUESTION  (a) In your spreadsheet from Q.12.92, use Select Data… to 
plot the 7-day average from March 1, 2020, up to February 14, 2021. You can do that by 
Editing the 7-day ave. series by changing the end point of the Series X values from $D$8 
to $D$354 and changing the end point of the Series Y values from $R$8 to $R$354. Record 
your graph. 
(b) Briefly discuss what you can conclude from the new graph. I.e., is it easier to compare 
the SIR model with the 7-day average of the unfitted data? 
(c) Select the unfitted data series in your graph and Add Trendline… and in the Trendline 
Options select Excel’s build-in Moving Average trendline (with Period [7]). In order to see 
it properly, change the series Dash type to Solid and the Width to 0.75 pt and the color to 
red. Briefly discuss what you can conclude about the difference between our centered 7-
day average and Excel’s moving 7-day average. 

About what you discovered: centered 7-day average and model validation 
As you discovered, the data for the 2020-2021 holiday season show large fluctuations. The 
centered 7-day average smooths out the data making them easier to visually compare with our 
model predictions. The advantage of the centered moving average over Excel’s built-in Moving 
Average trendline (with Period [7]) is that it doesn’t introduce a systematic 3-day time-shift in the 
average (you may have seen graphs of this same type widely reported in the popular press). The 
only catch with the centered average is that the last three days of data are averages over 6, 5 and 
4 days, respectively, instead of 7 days – if you only want to plot the true 7-day average (and we 
do), you should omit any points that are not averaged over the full 7 days.  
 
The reason for averaging over 7 days is that there are variations in testing and reporting that 
generally depend on the day of the week, e.g., Friday’s data are usually larger than average, and 
Saturday and Sunday’s data are usually lower than average. The centered 7-day average smooths 
out those systematic daily variations. 
 
As you discovered, the SIR model does a good job of predicting the general shape of the 𝑅𝑅𝑖𝑖(𝑡𝑡) 
curve after Thanksgiving through the holiday season and up to February 14, 2021. In your 
discussion it’s important to note that the fit only uses data up to Thanksgiving so that the 
comparison really is a test of what the model predicts. We’ll come back to this discussion after 
we’ve added vaccinations to the model.  

12.9 Modeling vaccination  
In late December 2020, the FDA approved COVID-19 vaccines for use in the United States 
(emergency use authorization). Fig.12.32 shows a simple model of how vaccination can be added 
to the SIR model, resulting in the susceptible-infected-recovered-vaccinated (SIRV) model.2 The 

 
2 Before vaccinations started in the United States, I developed an even simpler SIR-V model that included vaccinations, but it 
was based on susceptible people being the only ones that were vaccinated. See https://arxiv.org/abs/2104.08856v1. That 
assumption didn’t match what actually happened in the US. 

http://circle4.com/biophysics
https://arxiv.org/abs/2104.08856v1


Chapter 12: COVID-19 and epidemiology (web edition) Page 95 of 124  v.4.4 © Peter Hugo Nelson 2023 
 

 Biophysics and Physiological Modeling Page 95 of 124    http://circle4.com/biophysics 

new feature is box 𝑣𝑣 for fully vaccinated individuals. The arrows entering box 𝑣𝑣 indicate the rates 
at which individuals are effectively vaccinated. Once “fully vaccinated,” people are assumed to 
be permanently immune to COVID-19 in the SIRV model of Fig. 12.33. The three rates leading 
to box 𝑣𝑣 are labeled 𝑅𝑅𝑣𝑣,𝑠𝑠, 𝑅𝑅𝑣𝑣,𝑖𝑖, and 𝑅𝑅𝑣𝑣,𝑟𝑟 where the subscript 𝑣𝑣 indicates vaccination and the 
subscripts 𝑠𝑠, 𝑖𝑖, and 𝑟𝑟 indicate the originating box. These three vaccination rates are related to the 
to the total rate of vaccination 𝑅𝑅𝑣𝑣 in the model population by 
 
 𝑅𝑅𝑣𝑣 = 𝑅𝑅𝑣𝑣,𝑠𝑠 + 𝑅𝑅𝑣𝑣,𝑖𝑖 + 𝑅𝑅𝑣𝑣,𝑟𝑟 (12.94) 
 

 
Fig.12.32 FD diagram of a simple modification of the SIR model that accounts for vaccinations – the SIRV 
model. The four boxes represent the four parts of the model population that can be affected by the disease. 
Box 𝑠𝑠 represents the portion of the population that’s susceptible to the disease. Box 𝑖𝑖 represents the portion 
of the population that’s infectious. Box 𝑟𝑟 represents the portion of the population that has recovered from the 
infection (or died). Box 𝑣𝑣 represented the portion of the population that’s been fully vaccinated. 

 
The bookkeeping equation for the SIRV model is 
 
 𝑁𝑁 = 𝑁𝑁𝑠𝑠 + 𝑁𝑁𝑖𝑖 + 𝑁𝑁𝑟𝑟 + 𝑁𝑁𝑣𝑣 (12.95) 
 
where the subscripts once again spell out the letters of the model. 
 
The number of vaccinated individuals in the model population is calculated from the “number 
fully vaccinated” 𝑁𝑁𝑣𝑣⋆ reported by OWID [2022a][2022b] using  
 
 𝑁𝑁𝑣𝑣new = 𝑞𝑞𝑁𝑁𝑣𝑣⋆

new (12.96) 
 
which assumes that vaccinations are 100% effective in fully vaccinated individuals – something 
that’s not universally true for vaccinations but gives us a best-case scenario. The FD instruction 
for the vaccination rate in the model population is 
 
 𝑅𝑅𝑣𝑣new = �𝑁𝑁𝑣𝑣new − 𝑁𝑁𝑣𝑣old�/δ𝑡𝑡 (12.97) 

infectious  recovered  susceptible 

𝑘𝑘𝑖𝑖𝑁𝑁𝑖𝑖𝑠𝑠 𝑘𝑘𝑟𝑟𝑁𝑁𝑖𝑖 

vaccinated 

𝑅𝑅𝑣𝑣,𝑠𝑠 
𝑅𝑅𝑣𝑣,𝑖𝑖 

𝑅𝑅𝑣𝑣,𝑟𝑟 

𝒔𝒔 

𝒗𝒗 

𝒊𝒊 𝒓𝒓 
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The rate of vaccination of susceptible individuals in the model population can be calculated using  
 
 𝑅𝑅𝑣𝑣,𝑠𝑠

new = 𝑁𝑁𝑠𝑠old ∗ 𝑅𝑅𝑣𝑣new/�𝑁𝑁𝑠𝑠old + 𝑁𝑁𝑖𝑖old + 𝑁𝑁𝑟𝑟old�  (12.98) 
similarly 
 𝑅𝑅𝑣𝑣,𝑖𝑖

new = 𝑁𝑁𝑖𝑖old ∗ 𝑅𝑅𝑣𝑣new/�𝑁𝑁𝑠𝑠old + 𝑁𝑁𝑖𝑖old + 𝑁𝑁𝑟𝑟old�  (12.99) 
and 
 𝑅𝑅𝑣𝑣,𝑟𝑟

new = 𝑁𝑁𝑟𝑟old ∗ 𝑅𝑅𝑣𝑣new/�𝑁𝑁𝑠𝑠old + 𝑁𝑁𝑖𝑖old + 𝑁𝑁𝑟𝑟old� (12.100) 
 
Equations (12.98), (12.99), and (12.100) assume that individuals in each of the three boxes 𝑠𝑠, 𝑖𝑖, 
and 𝑟𝑟 are equally likely to be vaccinated. In the SIRV model, the numbers in boxes, 𝑖𝑖 and 𝑟𝑟 can 
be calculated using 
 𝑁𝑁𝑖𝑖new = 𝑁𝑁𝑖𝑖old + �𝑅𝑅𝑖𝑖new − 𝑅𝑅𝑟𝑟new − 𝑅𝑅𝑣𝑣,𝑖𝑖

new� ∗ δ𝑡𝑡 (12.101) 
 
 𝑁𝑁𝑟𝑟new = 𝑁𝑁𝑟𝑟old + �𝑅𝑅𝑟𝑟new − 𝑅𝑅𝑣𝑣,𝑟𝑟

new� ∗ δ𝑡𝑡 (12.102) 
 

 Q.12.94  (a) Combining equations (12.101), (12.99) and the bookkeeping equation (12.95) 
(noting that 𝑁𝑁𝑠𝑠old + 𝑁𝑁𝑖𝑖old + 𝑁𝑁𝑟𝑟old = 𝑁𝑁 − 𝑁𝑁𝑣𝑣old), show that 

 
 𝑁𝑁𝑖𝑖new = 𝑁𝑁𝑖𝑖old + �𝑅𝑅𝑖𝑖new − 𝑅𝑅𝑟𝑟new − 𝑁𝑁𝑖𝑖old ∗ 𝑅𝑅𝑣𝑣new/�𝑁𝑁 − 𝑁𝑁𝑣𝑣old�� ∗ δ𝑡𝑡 (12.103) 
 

(b) By combining equations (12.102) and (12.100), show that 
 
 𝑁𝑁𝑟𝑟new = 𝑁𝑁𝑟𝑟old + �𝑅𝑅𝑟𝑟new − 𝑁𝑁𝑟𝑟old ∗ 𝑅𝑅𝑣𝑣new/�𝑁𝑁 − 𝑁𝑁𝑣𝑣old�� ∗ δ𝑡𝑡 (12.104) 
 

(c) Using the bookkeeping equation (12.95), show that we can find 𝑁𝑁𝑠𝑠new using  
 
 𝑁𝑁𝑠𝑠new = 𝑁𝑁 − 𝑁𝑁𝑖𝑖new − 𝑁𝑁𝑟𝑟new − 𝑁𝑁𝑣𝑣new (12.105) 
 
Note: When comparing the model variables with the published data, it’s important to recall that 
all vaccinations are reported, but only about one-in-five infections were reported. 
Also Note: People are considered fully vaccinated 2 weeks after their second dose of the Pfizer-
BioNTech or Moderna COVID-19 vaccines, or 2 weeks after the single-dose Johnson & Johnson’s 
Janssen COVID-19 vaccine [CDC 2021]. Just like the other jumps in the SIR models, this 
extended process is approximated by a single jump transition of variable duration. As a result, 
students should once again be reminded that we’re only trying to understand the basics of 
epidemiology with our SIRV model.  
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Testing the SIRV model 
Open and inspect spreadsheet BPM.Ch12_Vaccinations.xlsx. It’s an extension of the 
BPM.Ch12_Model_validation.xlsx spreadsheet that you analyzed in Q.12.92 and Q.12.93. It 
contains additional columns for 𝑅𝑅𝑣𝑣, 𝑁𝑁𝑣𝑣, and 𝑁𝑁𝑣𝑣⋆. The data for 𝑁𝑁𝑣𝑣⋆ are taken directly from those 
reported by OWID [2022a]. 
 

 Q.12.95  DISCUSSION QUESTION  In spreadsheet BPM.Ch12_Vaccinations.xlsx, 𝑅𝑅𝑣𝑣 is 
calculated using instruction (12.97),  𝑁𝑁𝑖𝑖 is calculated using instruction (12.103), 𝑁𝑁𝑟𝑟 is 
calculated using instruction (12.104), 𝑁𝑁𝑠𝑠 is calculated using instruction (12.105) but 𝑁𝑁𝑣𝑣 is 
calculated using 𝑁𝑁𝑣𝑣new = 0 to make the spreadsheet prediction initially match the SIR 
model with no vaccination. You should confirm that the spreadsheet prediction for 𝑅𝑅𝑖𝑖(𝑡𝑡) 
matches your answer to Q.12.93(a) made with the original SIR model, then change cell P3 
to use instruction (12.96) and then copy it down to the bottom of the spreadsheet using the 
left-double-click method to change the solid-orange-line prediction from the SIR model to 
that for the SIRV model with the number vaccinated calculated using instruction (12.96).  
(a) Record your graph, and 
(b) Briefly discuss whether the resulting SIRV model prediction better matches the reported 
data than the SIR model. 
Hint: After you make the change, you can use Undo (Ctrl+Z) and Redo (Ctrl+Y) to switch 
between the SIR and SIRV models – look at the graphs as they change to get a visual idea 
of the comparison.  

About what you discovered: SIRV model validation 
Fig.12.33(a) and Fig.12.33(b) show the SIRV model fitted to USA data up to Thanksgiving Day 
(November 26, 2020) with a model population of 𝑞𝑞 = 21.7% that’s based on the CDC estimate 
[CDC 2021a]. The combination of the two graphs correspond to your answer to Q.12.95. 
Fig.12.33(a) includes the infection rate coefficient 𝑘𝑘𝑖𝑖(𝑡𝑡) that was included in your answer, but I 
have added circled numbers in green (not asked for) to indicate the epochs of the fitted model. 
Fig.12.33(a) shows only the data used in the fit whereas Fig.12.33(b) includes the unfitted that 
you had in your answer to Q.12.95. The purpose for showing the two graphs together is to visually 
summarize what we did in our modeling. It's important to take the time to design graph(s) that 
summarize your research as clearly and succinctly as possible. A casual reader of your research 
will always look at the figures even if they don’t read the text all the way through. Hence, 
designing stand-alone graphs and writing good captions is an important part of scientific writing. 
 
As discussed above, Fig.12.33(a) visually highlights that the fit only uses data up to Thanksgiving 
Day. It further highlights that the infection rate coefficient remains constant at the same value 
𝑘𝑘𝑖𝑖 = 𝑘𝑘5 = 0.18 d−1 that started the fall dragon – throughout the entire 2020/2021 holiday period 
and beyond. Comparing Fig.12.33(a) and Fig.12.33(b), it’s clear that we’ve tested the predictions 
of the model using the unfitted data (grey diamonds) that were not used in the fit. As you 
discovered in Q.12.93, the centered 7-day moving average of the USA data makes for an easier 
comparison of the USA data with the model predictions. 
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Fig.12.33 Excel charts showing US data and the predictions of the SIRV model. The blue circles show USA  
data reported as confirmed cases per day up to Thanksgiving Day (November 26, 2020). The jagged black  
line shows the centered 7-day moving average of the USA data. The solid orange line shows the predictions  
of the SIRV model assuming that the model population is 𝑞𝑞 = 21.7% of the actual population [CDC 2021a].  
Chart (a) shows the infection rate coefficient 𝑘𝑘𝑖𝑖(𝑡𝑡) as a function of time on the secondary vertical axis.  
Circled numbers indicate the epochs of the pandemic. Chart (b) shows additional USA data (grey diamonds)  
up to February 14, 2021, that were not used in the fit and the corresponding 7-day average (jagged black line).  
These unfitted data validate the predictions of the SIRV model with a constant infection rate coefficient of  
𝑘𝑘5 = 0.18 d−1 in epoch ⑤ of the pandemic. Day 400 corresponds to April 1, 2021. Data source OWID [2022a]. 

 
 
In Q.12.95 we tested the predictions of the SIRV model for the 2020/2021 holiday period based 
on data only up to Thanksgiving 2020. We’re now going to redo the fit to the SIRV model using 
all the USA data up to February 14, 2021. Let’s see what we can discover … 
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 Q.12.96  DISCUSSION QUESTION  Extend the data used in fit series to include all the data up 
to February 14, 2021 (Row 357). Then remove the unfitted data series. You should then 
extend the 𝑟𝑟 and 𝑟𝑟2 columns down to row 357. Check the formula for 𝑄𝑄 in cell A45 and 
make sure that it calculates the sum of all the 𝑟𝑟2 values up to February 14, 2021. 
(a) Now use Solver to find the least-squares best-fit values of all of 𝑘𝑘1, 𝑘𝑘2, 𝑡𝑡12, 𝜎𝜎12, 𝑘𝑘3, 𝑡𝑡23, 
𝜎𝜎23, 𝑘𝑘4, 𝑡𝑡34, 𝜎𝜎34, 𝑘𝑘5, 𝑡𝑡45, 𝜎𝜎45, and the model population size 𝑁𝑁 and record your best-fit 
graph. 
(b) Briefly discuss and compare the best-fit value of 𝑞𝑞 with the CDC estimated value of 
𝑞𝑞 = 21.7%. 
Hint: Don’t forget to use what you learned from the “talking numbers” AWYD in 
CHAPTER 2. You might find the BPM.Ch02_Talking_numbers.xlsx preformatted 
spreadsheet useful. 
(c) Compare the new best-fit value of 𝑘𝑘5 with the value you obtained with 𝑞𝑞 = 21.7%.  
(d) Using your current fit, estimate the size of the peak in 𝑅𝑅𝑖𝑖(𝑡𝑡) if no social distancing 
measures had been implemented. Record the height of the uncontrolled 𝑅𝑅𝑖𝑖(𝑡𝑡) peak and 
compare it to the height of the 𝑅𝑅𝑖𝑖(𝑡𝑡) peak in your fitted model in part (a). 
Hint: You can do that by changing the instruction for the infection rate coefficient to 
𝑘𝑘𝑖𝑖new = 𝑘𝑘1 in your spreadsheet. 

About what you discovered: the peak we flattened  
 

 
Fig.12.34 Excel chart showing US data and the predictions of the SIRV model. The blue circles show USA  
data reported as confirmed cases per day up to February 14, 2021. The jagged black line shows the centered  
7-day moving average of the USA data. The solid orange line shows the SIRV model with a fitted model  
population of 𝑞𝑞 = 20.1% of the actual population. Data source OWID [2022a]. 

 
Fig.12.34 shows your answer to Q.12.96(a). The general character of the fit is unchanged from 
Fig.13.34, but because we have now made the model population size an adjustable parameter and 
refitted to all the data including the 2020/2021 holiday period, the fitted model matches the 
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reported data more closely during the holiday period without changing the goodness of fit up to 
Thanksgiving Day. The value of the fitted model population, 𝑞𝑞 = 20.1%, is only 7% less than 
the CDC estimate of 𝑞𝑞 = 21.7% and the value of 𝑘𝑘5 is essentially unchanged (decreasing by just 
0.01%). 
 
While the three model peaks in Fig.12.33 have a somewhat similar appearance, it’s important to 
note that the third peak in Fig.12.33 is qualitatively different from the first two peaks. The first 
peak is caused by a transition from uncontrolled spread ① to the first period of stricter social 
distancing (epoch ②) that prevented the exponential dragon peak in epoch ①. The second peak 
is similarly caused by a transition from relaxed social distancing (epoch ③) to a second period 
④ of stricter social distancing that prevented the exponential dragon peak in epoch ③. In 
contrast, the third peak during the middle of epoch ⑤ of Fig.12.33 is simply the exponential 
dragon (Fig.12.12(b)) that’s intrinsic to the SIR model with a constant infection rate coefficient 
throughout the peak. Thus, the success of the model in predicting the qualitative behavior of the 
spread of COVID-19 during the holiday period and the first month and a half of 2021 is a 
significant validation of the basic SIR model and it’s SIRV variant.  
 
At the beginning of the pandemic in the US, there was a lot of public discussion about flattening 
the curve (Fig.12.02 and Fig.12.10). It’s important to note that the extended period of relaxed 
social distancing during epoch ⑤ really is the peak (exponential dragon) that we were trying to 
flatten. Hence, the correspondence between the SIRV model and the USA data during the third 
peak confirms what you predicted in Q.12.20(a) about flattening the curve in the SIR model. As 
you discovered in Q.12.96(d) the model peak in Fig.12.34 is actually about 30-times lower than 
predicted by the same model (𝑅𝑅𝑖𝑖 ≈ 7.2 × 106 1/d) if no social distancing measures had been 
taken.  
 
Open and inspect spreadsheet BPM.Ch12_Alpha.xlsx. It’s an extension of the 
BPM.Ch12_Vaccinations.xlsx spreadsheet that you analyzed in Q.12.95. It now extends to May 
31, 2021. I added three new parameters in the Param$ column to model the sixth epoch of the 
COVID-19 pandemic in the US caused by further loosening of social distancing measures and 
renewed opposition to mask wearing. The spreadsheet includes new columns for 𝐹𝐹56 and 𝑆𝑆56. I’ve 
included instructions for 𝑆𝑆56. You’ll compete the column for 𝐹𝐹56 in Q.12.97(b).  
 

 Q.12.97  DISCUSSION QUESTION  (a) By generalizing equations (12.90), (12.92) and (12.91) 
write out algorithm instructions for 𝐹𝐹56, 𝑘𝑘𝑖𝑖 and  𝑆𝑆56. 
(b) In spreadsheet BPM.Ch12_Alpha.xlsx confirm that the equations for 𝑘𝑘𝑖𝑖, and 𝑆𝑆56 are 
implemented correctly then complete the SIRV model table by entering your instruction for 
𝐹𝐹56. Then adjust the values of the parameters 𝑘𝑘6, 𝑡𝑡56, and 𝜎𝜎56 by hand to make the SIRV 
model match the exponential dragon for epoch ⑥. By monitoring the value of 𝑄𝑄, 
determine the best-fit values of: 𝑘𝑘6 to the nearest 2 significant figures; and the best-fit 
values of 𝑡𝑡56 and 𝜎𝜎56 to the nearest day. Record your “by hand” estimates for 𝑘𝑘6, 𝑡𝑡56, and 
𝜎𝜎56 in the LS fit parameters table using Copy and Paste Values from cells AE1:AM1. 
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Note: In part (d) you’ll be asked to record your LS fit parameters table for parts (b) through 
(d) as a single table in your Word.docx answer. 
(c) Now use Solver to find the least-squares best-fit values of all of 𝑘𝑘1, 𝑘𝑘2, 𝑡𝑡12, 𝜎𝜎12, 𝑘𝑘3, 𝑡𝑡23, 
𝜎𝜎23, 𝑘𝑘4, 𝑡𝑡34, 𝜎𝜎34, 𝑘𝑘5, 𝑡𝑡45, 𝜎𝜎45, 𝑘𝑘6, 𝑡𝑡56, and 𝜎𝜎56 (don’t change the value of 𝑁𝑁 or q) and record 
the best-fit values in your LS fit parameters table. 
(d) Now use Solver to find the least-squares best-fit values of all of 𝑘𝑘1, 𝑘𝑘2, 𝑡𝑡12, 𝜎𝜎12, 𝑘𝑘3, 𝑡𝑡23, 
𝜎𝜎23, 𝑘𝑘4, 𝑡𝑡34, 𝜎𝜎34, 𝑘𝑘5, 𝑡𝑡45, 𝜎𝜎45, 𝑘𝑘6, 𝑡𝑡56, 𝜎𝜎56, and the model population size 𝑁𝑁. Don’t forget 
to save this spreadsheet, you’ll need it later. Record the LS fit parameters table of your 
answers to parts (b) – (d) in your Word doc answer. (You can copy and “paste as picture” 
into Word.) 
(e) Record your graph of 𝑅𝑅𝑖𝑖(𝑡𝑡) together with the graph of 𝑘𝑘𝑖𝑖(𝑡𝑡) up to day 𝑡𝑡 = 500 d. 
(f) Briefly discuss what you can conclude from your fit. 

About what you discovered: modeling the alpha variant  
 

 
Fig.12.35 Excel chart showing USA data and the predictions of the SIRV model. The blue circles show USA  
data reported as confirmed cases per day up to May 31, 2021. The jagged black line shows the centered 7-day  
moving average of the USA data. The solid orange line shows the predictions of the SIRV model with a fitted  
model population of 𝑞𝑞 = 19.8% of the actual population. The chart also shows the infection rate coefficient  
𝑘𝑘𝑖𝑖(𝑡𝑡) as a function of time on the secondary vertical axis. Circled numbers indicate the epochs of the pandemic.  
Data source OWID [2022a]. 

 
Fig.12.35 shows your answer to Q.12.97(e). The SIRV model does an excellent job of modeling 
the pandemic up to May 31, 2021. It predicts that the pandemic was nearly over by May 31, 2021 
(day 460). The fourth peak around day 406 (April 7, 2021), corresponds to an exponential dragon 
with an infection rate constant of 𝑘𝑘𝑖𝑖 = 𝑘𝑘6 = 0.349 1/d. Hence, the herd immunity threshold for 
epoch ⑥ is ℎ𝑝𝑝 = ℎ6 = 64%. The model population’s immunity has increased to ℎ = 74.1% by 
May 31, 2021, and the model predicts that pandemic is nearly over in the US – assuming that the 
infection rate constant stays constant at  𝑘𝑘𝑖𝑖 = 𝑘𝑘6 = 0.349 1/d and that immunity is permanent. 
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The fact that the fit shown in Fig.12.35 has essentially the same value of 𝑞𝑞 ≈ 20% as the fit in 
Fig.12.34, provides strong support for the SIRV model and the hypothesis that 𝑞𝑞 is approximately 
constant (at least up to May 31, 2021). The fitted value of 𝑘𝑘6 = 0.349 d−1, is nearly double 𝑘𝑘3 
and 𝑘𝑘5 reflecting a significant further reduction in social distancing during epoch ⑥, although 
the infection rate constant is just over half of what it was during the uncontrolled spread in epoch 
① with 𝑘𝑘1 = 0.60 d−1 at the beginning of the pandemic. The fact that the fourth peak in the 
pandemic is modeled as an exponential dragon with a single constant 𝑘𝑘𝑖𝑖 = 𝑘𝑘6 is a further 
significant validation of the SIRV model.  

12.10 Failure of the SIRV model – breakthrough infections and delta 
The success of the SIRV model in explaining the fourth smaller peak in the pandemic (Fig.12.35) 
with a constant  𝑘𝑘𝑖𝑖 = 𝑘𝑘6 and a fitted value of 𝑞𝑞 ≈ 20% (the same as the rest of the pandemic), is 
a significant additional validation of the SIRV model. However, key predictions of the SIRV 
model have yet to be tested – particularly those that relate to the end of the pandemic. As we 
discovered (Fig.12.35), the SIRV model of the alpha variant with a final infection rate coefficient 
of 𝑘𝑘𝑖𝑖 = 𝑘𝑘6 = 0.349 d−1 predicted that the pandemic was nearly over. However, as everyone in 
the US discovered, that prediction turned out to be incorrect for reasons that are now common 
knowledge (as of mid-February 2022). 

The delta variant 
Open and inspect spreadsheet BPM.Ch12_Delta_dragon.xlsx. It’s an extension of the 
BPM.Ch12_Alpha.xlsx spreadsheet that you analyzed in Q.12.97. It now extends to August 12, 
2021. I added three new parameters in the Param$ column to model the seventh epoch of the 
COVID-19 pandemic in the US caused by further loosening of social distancing measures and the 
appearance of the delta variant of the SARS-CoV-2 virus. The spreadsheet includes new columns 
for 𝐹𝐹67 and 𝑆𝑆67. I’ve included instructions for 𝑆𝑆67. You’ll compete the column for 𝐹𝐹67 in 
Q.12.98(b).  
 

 Q.12.98  DISCUSSION QUESTION  (a) By generalizing equations (12.90), (12.92) and (12.91) 
write out algorithm instructions for 𝐹𝐹67, 𝑘𝑘𝑖𝑖 and  𝑆𝑆67. 
(b) In spreadsheet BPM.Ch12_Delta_dragon.xlsx confirm that the equations for 𝑘𝑘𝑖𝑖, and 𝑆𝑆67 
are implemented correctly then complete the SIRV model table by entering your instruction 
for 𝐹𝐹67. Then adjust the values of the parameters 𝑘𝑘7, 𝑡𝑡67, and 𝜎𝜎67 by hand to make the 
SIRV model match the beginning of the exponential dragon for epoch ⑦. By monitoring 
the value of 𝑄𝑄, determine the best-fit values of: 𝑘𝑘7 to the nearest 2 significant figures; and 
the best-fit values of 𝑡𝑡67 and 𝜎𝜎67 to the nearest day. Record your “by hand” estimates for 
𝑘𝑘7, 𝑡𝑡67, and 𝜎𝜎67 in the LS fit parameters table using Copy and Paste Values from cells 
AG1:AP1. 
Note: In part (d) you’ll be asked to record your LS fit parameters table for parts (b) through 
(d) as a single table in your Word.docx answer. 
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(c) Now use Solver to find the least-squares best-fit values of all of  𝑘𝑘1, 𝑘𝑘2, 𝑡𝑡12, 𝜎𝜎12, 𝑘𝑘3, 
𝑡𝑡23, 𝜎𝜎23, 𝑘𝑘4, 𝑡𝑡34, 𝜎𝜎34, 𝑘𝑘5, 𝑡𝑡45, 𝜎𝜎45, 𝑘𝑘6, 𝑡𝑡56, 𝜎𝜎56, 𝑘𝑘7, 𝑡𝑡67, and 𝜎𝜎67 (don’t change the value of 
𝑁𝑁 or q) and record the best-fit values in your LS fit parameters table. 
(d) Finally, use Solver to find the least-squares best-fit values of all of 𝑘𝑘1, 𝑘𝑘2, 𝑡𝑡12, 𝜎𝜎12, 𝑘𝑘3, 
𝑡𝑡23, 𝜎𝜎23, 𝑘𝑘4, 𝑡𝑡34, 𝜎𝜎34, 𝑘𝑘5, 𝑡𝑡45, 𝜎𝜎45, 𝑘𝑘6, 𝑡𝑡56, 𝜎𝜎56, 𝑘𝑘7, 𝑡𝑡67, 𝜎𝜎67, and the model population size 
𝑁𝑁. Don’t forget to save this spreadsheet, you’ll need it later. Record the LS fit parameters 
table of your answers to parts (b) – (d) in your Word doc answer. (You can copy and “paste 
as picture” into Word.) 
(e) Record your graph of 𝑅𝑅𝑖𝑖(𝑡𝑡) together with the graph of 𝑘𝑘𝑖𝑖(𝑡𝑡) up to day 𝑡𝑡 = 600 d. 
(f)  DISCUSSION QUESTION  Briefly discuss what you can conclude from your fit. 

 
As mentioned above, the seventh epoch of the pandemic coincides with the appearance of the 
delta variant in the US. During epoch ⑦, delta rapidly took over as the dominant variant and by 
August 9, 2021, delta accounted for more than 97% of the SARS-CoV-2 sequences in the US 
[OWID 2022c].  
 

 Q.12.99  DISCUSSION QUESTION  (a) Compare your fitted value of 𝑘𝑘7 with the fitted value of 
𝑘𝑘6, and  
(b) Briefly discuss what you can conclude about the infectiousness of the delta variant 
compared with the alpha variant assuming that the level of social distancing was unchanged 
during epochs ⑥ and ⑦, that the fitted value of 𝑘𝑘7 accurately represents the delta variant, 
and that the mean infectious time 𝜏𝜏𝑖𝑖 is the same for the delta variant. 

About what you discovered: modeling the delta dragon 
 

 
Fig.12.36 Excel chart showing USA data and the predictions of the SIRV model. The blue circles show USA  
data reported as confirmed cases per day up to August 12, 2021. The jagged black line shows the centered  
7-day moving average of the USA data. The solid orange line shows the predictions of the SIRV model with  
a fitted model population of 𝑞𝑞 = 19.8% of the actual population. The chart also shows the infection rate  
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coefficient 𝑘𝑘𝑖𝑖(𝑡𝑡) as a function of time on the secondary vertical axis. Day 600 corresponds to October 18, 
2021. Data source OWID [2022a]. 

 
Fig.12.36 shows your answer to Q.12.98(e). As you discovered, the SIRV model can successfully 
explain the pandemic up to August 12, 2021. It predicts that the delta dragon should reach its peak 
at around day 541 (August 20, 2021). That peak corresponds to an exponential dragon with an 
infection rate constant of 𝑘𝑘𝑖𝑖 = 𝑘𝑘7 = 0.913 1/d. Hence, the predicted herd immunity threshold for 
epoch ⑦ is ℎ𝑝𝑝 = ℎ7 = 86%. The model population’s immunity has increased to ℎ = 82.4% by 
August 12, 2021, and the model predicts that infection rate should soon begin to come down quite 
rapidly – assuming that the infection rate constant stays constant at  𝑘𝑘𝑖𝑖 = 𝑘𝑘7 = 0.913 1/d and 
that immunity is permanent etc. 
 
The fact that the fit shown in Fig.12.36 has essentially the same value of 𝑞𝑞 ≈ 20% as the fit in 
Fig.12.34 and Fig.12.35, provides strong support for the SIRV model and the hypothesis that 𝑞𝑞 is 
approximately constant (at least up to August 12, 2021).  
 
As shown in Fig.12.36, the fitted value of 𝑘𝑘7 = 0.913 d−1, is substantially higher than the value 
at any other time during the pandemic. As you discussed in Q.12.99, The fitted infection rate 
constant for the delta variant (𝑘𝑘𝑖𝑖 = 𝑘𝑘7 = 0.913  d−1) is ~2.6 times higher than the previous 
variants of the virus during epoch ⑥, which, if the level of social distancing is the same, would 
imply that the basic reproduction number for the delta variant could be as high as ℛ0 ≈ 11 in the 
absence of any social distancing measures. However, it’s not clear that this interpretation is 
realistic because it fails to account for breakthrough infections – see below.  

Failure of the SIRV model 
Open and inspect spreadsheet BPM.Ch12_Failure_of_SIRV.xlsx. It’s an extension of the 
BPM.Ch12_Delta_dragon.xlsx spreadsheet that you analyzed in Q.12.98. In addition to the data 
up to August 12, 2021, it also includes additional USA data up to October 18, 2021, that have not 
yet been plotted. Our plan is to test the predictions of the SIRV model for the delta dragon. The 
solid orange line in the spreadsheet chart shows the predictions of the SIR model fitted up to 
August 12, 2021. It’s important to note that it’s the same fit that you made in Q.12.98 – you should 
check that your model parameters match those in the preformatted spreadsheet. 
 

 Q.12.100  DISCUSSION QUESTION  (a) In the preformatted spreadsheet, use Select Data… to 
plot the unfitted data from August 13, 2021, up to October 18, 2021. You can do that by 
Editing the unfitted data series and changing the end point of the Series X values from 
$D$538 to $D$603 and changing the end point of the Series Y values from $T$538 to 
$T$603. You should now see the unfitted data up to October 18, 2021, plotted as grey 
diamonds. Then use Select Data… to extend the 7-day average from August 13, 2021 up to 
October 18, 2021. You can do that by Editing the 7-day ave. series by changing the end 
point of the Series X values from $D$536 to $D$603 and changing the end point of the 
Series Y values from $X$536 to $X$603. Record your graph. 
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(b) Briefly discuss what you can conclude from the graph, i.e., how well does the SIRV 
model predict the unfitted data from August 13, 2021, up to October 18, 2021? Can you 
come up with an explanation for what you see in the graph? 
Hint: Are there any basic assumptions of the SIRV model that turned out to be incorrect 
for the delta variant? 
 

In Q.12.100 we tested the predictions of the SIRV model up to October 18, 2021, based on data 
only up to August 12, 2021. The prediction was not particularly accurate. We’re now going to try 
redoing the fit to the SIRV model using all the USA data up to October 18, 2021, to see if the 
model does any better if we include the new data in the fit. Let’s see what we can discover … 
 

 Q.12.101  DISCUSSION QUESTION  Extend the USA data series to include all the data up to 
October 18, 2021 (row 603). Then remove the unfitted data series and the Aug. 12, 2021 
series. You should then extend the 𝑟𝑟 and 𝑟𝑟2 columns down to row 603. Check the formula 
for 𝑄𝑄 in cell A57 and make sure that it calculates the sum of all the 𝑟𝑟2 values up to October 
18, 2021. 
(a) Use Solver to find the least-squares best-fit values of 𝑘𝑘7, 𝑡𝑡67, and 𝜎𝜎67 for the data up to 
October 18, 2021. Record your graph of 𝑅𝑅𝑖𝑖(𝑡𝑡) together with the graph of 𝑘𝑘𝑖𝑖(𝑡𝑡) up to day 
𝑡𝑡 = 600 d and record your “best fit” estimates for 𝑘𝑘7, 𝑡𝑡67, and 𝜎𝜎67 in the LS fit parameters 
table using Copy and Paste Values from cells AG1:AP1. 
Note: In part (d) you’ll be asked to record your LS fit parameters table for parts (a) through 
(c) as a single table in your Word.docx answer. 
(b) Now use Solver to find the least-squares best-fit values of all of 𝑘𝑘1, 𝑘𝑘2, 𝑡𝑡12, 𝜎𝜎12, 𝑘𝑘3, 𝑡𝑡23, 
𝜎𝜎23, 𝑘𝑘4, 𝑡𝑡34, 𝜎𝜎34, 𝑘𝑘5, 𝑡𝑡45, 𝜎𝜎45, 𝑘𝑘6, 𝑡𝑡56, 𝜎𝜎56, 𝑘𝑘7, 𝑡𝑡67, and 𝜎𝜎67 (don’t change the value of 𝑁𝑁 or 
q) and record the best-fit values in your LS fit parameters table. 
(c) Finally, use Solver to find the least-squares best-fit values of all of 𝑘𝑘1,𝑘𝑘2,
𝑡𝑡12,𝜎𝜎12,𝑘𝑘3, 𝑡𝑡23,𝜎𝜎23, 𝑘𝑘4, 𝑡𝑡34, 𝜎𝜎34, 𝑘𝑘5, 𝑡𝑡45, 𝜎𝜎45, 𝑘𝑘6, 𝑡𝑡56, 𝜎𝜎56, 𝑘𝑘7, 𝑡𝑡67, 𝜎𝜎67 and the model 
population size 𝑁𝑁. Record the LS fit parameters table of your answers to parts (a) – (c) in 
your Word doc answer. (You can copy and “paste as picture” into Word.) 
(d) Record your graph from part (c) of 𝑅𝑅𝑖𝑖(𝑡𝑡) together with the graph of 𝑘𝑘𝑖𝑖(𝑡𝑡) up to day 𝑡𝑡 =
600 d. 
(e) Briefly discuss what happened to the fit when you fitted 𝑘𝑘7, 𝑡𝑡67, and 𝜎𝜎67 in part (a), and 
how that fit changed as you redid the fit in parts (b) and (c).  
(f)  DISCUSSION QUESTION  Briefly discuss what you can conclude from your fits. 

About what you discovered: failure of the SIRV model 
Fig.12.37(a) shows your answer to Q.12.100(a). As you discovered, the SIRV model prediction 
successfully predicts that peak will occur soon after August 12, 2021. It also successfully predicts 
the approximate height of the peak, but the actual values almost immediately diverge from the 
predicted values. The predicted peak is too narrow, too symmetrical, and occurs too soon. These 
differences might be explained, in part, by breakthrough infections that were reported to occur 
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during August, September and October 2021, when recovered or vaccinated people were infected 
with the delta variant – a phenomenon that’s not part of the SIRV model of Fig.12.32.  
 
Breakthrough infections  
 

 
Fig.12.37 Excel charts showing USA data and the predictions of the SIRV model with a fitted model  
population of 𝑞𝑞 = 19.8% of the actual population. The jagged black line shows the centered 7-day moving  
average of the USA data. The infection rate coefficient 𝑘𝑘𝑖𝑖(𝑡𝑡) is shown as a function of time on the  
secondary vertical axis. (a) The blue circles show data up to August 12, 2021, that were used for the fit  
and the grey diamonds show additional data up to October 18, 2021, that were not used in the fit. (b) A refit  
of the SIRV model to all the data up to October 18, 2021, allowing only 𝑘𝑘7, 𝑡𝑡67, and 𝜎𝜎67 to be adjusted in  
the LS fit. Day 600 corresponds to October 18, 2021. Data source OWID [2022a]. 

 
Fig.12.37(b) shows your answer to Q.12.101(a). The fit to 𝑘𝑘7, 𝑡𝑡67, and 𝜎𝜎67 in part (a) makes the 
SIRV model fit the delta peak better. It centers the peak at approximately the correct time. The 
peak is wider, but it’s still narrower than the observed peak and the predicted delta peak is still 
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too symmetrical. The fit prior to the delta peak is now compromised as the dip between the fourth 
and fifth peaks is now not deep enough. A simple explanation for all of that is provided by the 
immune fraction ℎ and the herd immunity threshold ℎ𝑝𝑝. For the fit in Fig.12.37(a) ℎ𝑝𝑝 = 86.3%. 
For the fit in Fig.12.37(b) ℎ𝑝𝑝 = 91.7%. The increase in ℎ𝑝𝑝 in the refitted model reflects an 
increased infection rate constant for delta, from 𝑘𝑘7 = 0.910 d−1 to 𝑘𝑘7 = 1.50 d−1. Increasing 𝑘𝑘7 
is the only way that the fitted SIRV model can increase the width and the height of the delta peak 
to account for the extra previously unpredicted breakthrough infections, but the cost is that the fit 
to the fourth peak and the transition to the fifth peak are now compromised. Our conclusion is that 
the SIRV model simply cannot model the entire pandemic – if we want to include the delta peak 
up to October 18, 2021. 
 
As you discovered in Q.12.101(b), adding 𝑘𝑘1, 𝑘𝑘2, 𝑡𝑡12, 𝜎𝜎12, 𝑘𝑘3, 𝑡𝑡23, 𝜎𝜎23, 𝑘𝑘4, 𝑡𝑡34, 𝜎𝜎34, 𝑘𝑘5, 𝑡𝑡45, 𝜎𝜎45, 
𝑘𝑘6, 𝑡𝑡56, 𝜎𝜎56 makes the fit to the delta peak only slightly better at the expense of the quality of the 
fit to the fourth peak. Adding 𝑁𝑁 to the fitted parameters increases the fitted model population to 
𝑞𝑞 ≈ 23%. This further improves the fit to the delta peak by increasing its width, but the fit to the 
third peak is degraded making the fitted third model peak too wide. The improvement to the delta 
peak is explained by there being more susceptible people left in the model population so that there 
can be more infections during the delta peak. This supports our conclusion that the SIRV model 
cannot account for the delta peak shown in Fig.12.37. Unfortunately, further development of the 
model to account for breakthrough infections is beyond the scope of this chapter. 
 
Problems with the fitted 𝑘𝑘𝑖𝑖 for delta  
In addition to the problems noted above for 𝑅𝑅𝑖𝑖(𝑡𝑡), there are also problems with the value of  𝑘𝑘7 in 
the fits. In the fit of Fig.12.37(a), 𝑘𝑘7 = 0.91 d−1 for the delta variant, which is 53% higher than 
the fitted value of 𝑘𝑘1 = 0.60 d−1 for the original alpha variant with no social distancing or mask 
wearing etc. Hence, that high number for 𝑘𝑘7 should raise a concern about whether the SIRV model 
(with no breakthrough infections) is still applicable. Either that or the delta variant really is 50% 
more transmissible than the original alpha variant. 
 
The fitted value for 𝑘𝑘7 = 1.5 d−1 for the delta variant in Fig.12.37(b), is 150% higher than 𝑘𝑘1 =
0.60 d−1, which seems implausibly high. That conclusion is also supported by the ever-increasing 
shape if 𝑘𝑘𝑖𝑖(𝑡𝑡) during the delta peak in Fig.12.37(b), which seems improbable within the SIRV 
model, but does support the idea of breakthrough infections caused by the new delta variant 
becoming more and more common at that time. 
 
Convergence problems with Solver  
When I was first working on the fits for Fig.12.37, I tried to short-cut our usual procedure … I 
attempted to fit all of our usual model parameters (except 𝑁𝑁) for the extra data. That didn’t work. 
Excel’s Solver failed to find a solution. The error message from Solver (2021) was “Solver 
encountered an error value in the Objective Cell or a Constraint cell.” with an additional 
explanation of “One of the cells in the worksheet became an error value when Solver tried certain values 
for the Variable Cells.” In this case, Solver tried to make 𝜎𝜎56 a negative value and that gave an error 
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for 𝐹𝐹56 as negative values for 𝜎𝜎56 in NORM.DIST() are not allowed and return #NUM! (this error 
occurred even though I had checked [] Make Unconstrained Variables Non-Negative). As 
mentioned previously, you should recall the “puddles in the parking lot” that we talked about in 
CHAPTER 9. Errors can occur when a puddle drains into a zero-value drain. The solution is to try 
different starting points for solver or to use a more systematic approach like we did in Q.12.101. 
 
 

 Q.12.102  RESEARCH QUESTION  Investigate and compare the SEIR model with the SIR 
model.  
Note: The SEIR model is discussed in the “America unmasked – the exponential dragon 
returns” AWYD after Q.12.83. 

Conclusion – about what you discovered 
Congratulations! If you made it here, then you’ve successfully learned how to apply our FD 
method from CHAPTER 3 to simple epidemiological models of COVID-19 in the United States. 
As we discovered, these models can do a surprisingly good job of modeling the daily infection 
rate 𝑅𝑅𝑖𝑖(𝑡𝑡). Along the way, we gained a different perspective on kinetic models and rate constants 
by applying them to the behavior of people. While people don’t jiggle around like molecules in 
solution, they do have interactions with others at a rate that can be successfully modeled using the 
FD techniques we first developed in CHAPTER 3. 
 
We started with the simplest-possible unlimited growth (UG) model. It predicted unconstrained 
exponential growth because the infection rate 𝑅𝑅𝑖𝑖 = 𝑘𝑘𝑖𝑖𝑁𝑁𝑖𝑖 was directly proportional to the number 
already infectious 𝑁𝑁𝑖𝑖. It’s another example of proportional change (CHAPTER 3). While this 
model isn’t realistic in the long run, we were able use least-squares fits to show that it successfully 
predicted the initial exponential growth of reported COVID-19 cases in the US during the first 19 
days of the outbreak in the US (epoch ①).  
 
We then modified the infection rate to be 𝑅𝑅𝑖𝑖 = 𝑘𝑘𝑖𝑖𝑁𝑁𝑖𝑖𝑠𝑠, where 𝑠𝑠 = 𝑁𝑁𝑠𝑠/𝑁𝑁 is the fraction of people 
that an infectious person interacts with that are still susceptible – because they haven’t been 
infected yet. The resulting finite population (FP) model accounts for the finite size of the model 
population and leads to classic logistic growth and can be used to show the effect of social 
distancing by changing the infection rate constant 𝑘𝑘𝑖𝑖.  
 
We discovered that adding recovery to the FP model leads directly to the susceptible-infected-
recovered model (SIR model). The infection rate 𝑅𝑅𝑖𝑖 = 𝑘𝑘𝑖𝑖𝑁𝑁𝑖𝑖𝑠𝑠 is the same as the FP model and 
recovery is modeled as a simple first-order elimination process with rate 𝑅𝑅𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑁𝑁𝑖𝑖 that’s 
analogous to first-order drug elimination (CHAPTER 4). As we discovered, adding recovery makes 
the resulting SIR model much more realistic. We spent the rest of the chapter investigating the 
predictions of the SIR model and comparing them with published data for the United States.  
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The SIR model is the origin of the epidemiological parameter ℛ0. For ℛ0 > 1, the SIR model 
always predicts that the infection rate curve, 𝑅𝑅𝑖𝑖(𝑡𝑡) will have a characteristic peaked shape – the 
exponential dragon.  A simple algebraic analysis allowed us to show that the SIR model predicts 
that the fraction susceptible 𝑠𝑠𝑝𝑝 at the peak in 𝑁𝑁𝑖𝑖 is given by 
 

 𝑠𝑠𝑝𝑝 =
𝑘𝑘𝑟𝑟
𝑘𝑘𝑖𝑖

=
1
ℛ0

 (12.27) 

 
where ℛ0 ≡ 𝑘𝑘𝑖𝑖𝜏𝜏𝑖𝑖 = 𝑘𝑘𝑖𝑖/𝑘𝑘𝑟𝑟 is the basic reproduction number and 𝜏𝜏𝑖𝑖 = 1/𝑘𝑘𝑟𝑟 is the mean 
infectious time. We also discovered that “herd immunity” is reached when the fraction immune 
ℎ = 1 − 𝑠𝑠 reaches the herd immunity threshold 
 

 ℎ𝑝𝑝 = 1 − 𝑠𝑠𝑝𝑝 = 1 −
1
ℛ0

 (12.33) 

 
In an optional calculus section, we were able to show that the final fraction susceptible 𝑠𝑠∞ is 
predicted by 
 ℛ0(1 − 𝑠𝑠∞) + ln 𝑠𝑠∞ ≈ 0 (12.47) 
 
Equation (12.47) is an implicit equation that predicts the fraction of susceptible people 𝑠𝑠∞ that 
aren’t infected at the end of the pandemic (𝑡𝑡 → ∞) assuming that the infection rate coefficient 𝑘𝑘𝑖𝑖 
is constant throughout the epidemic. It provides support for Espe’s claim in the introduction – that 
not all people need be infected in a pandemic because 𝑠𝑠∞ is not zero for finite values of ℛ0. 
 
The initial public health response to the pandemic in the US was to recommend/mandate social 
distancing. Various cities, counties and states implemented lockdowns or “safer-at-home” 
measures. In a short while, the public learned that mask wearing was also an effective weapon in 
fighting the spread of the virus. In section 12.5, we discovered that we could model the initial 
period of stricter social distancing (epoch ②) by changing the infection rate constant 𝑘𝑘𝑖𝑖. Later, 
we discovered that we could make 𝑘𝑘𝑖𝑖 a variable infection rate coefficient, so that the change 
from the initial exponential growth to the period of exponential decay following the peak in the 
spring surge could be modeled using a Gaussian transition function that could be implemented 
in Excel using the NORM.DIST function. We subsequently confirmed that later changes between 
stricter and more relaxed social distancing could also be modeled with Gaussian transition 
functions between epochs.  
 
Detailed analysis of the initial period of stricter social distancing (epoch ②) led us to discover a 
simple method for determining the decay rate constant 𝑘𝑘𝑑𝑑 = 𝑘𝑘𝑟𝑟 − 𝑘𝑘𝑖𝑖𝑠𝑠, which allowed us to 
characterize the exponential decay with a half-life 𝑡𝑡½. Similar analysis allowed us to characterize 
periods of exponential growth with a growth rate constant, 𝑘𝑘𝑔𝑔 or 𝑘𝑘𝑢𝑢, and a doubling time 𝑡𝑡𝑑𝑑. We 
were also able to discover a correlation between the death rate with the infection rate using a 
correlation function that used a scaling factor 𝑚𝑚𝑟𝑟 and a time shift 𝑡𝑡𝑚𝑚. Using those correlations, 
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we were able to estimate that 60,000+ lives were lost because the rest of the US failed to follow 
NYC’s lead in the time leading up to Memorial Day (May 25, 2020). In APPENDIX 12.A, we 
discovered a way to account for some of the discrete-time errors caused by the timestep being too 
big (δ𝑡𝑡 = 1 d) during the initial exponential growth period. 
 
Even though the approach uses only introductory methods, the modeling approach is remarkably 
successful in modeling the spread of COVID-19 in the US. Because of its simplicity, the model 
also provides surprising insights into the spread of the virus. Notably, after the initial exponential 
outbreak (epoch ①) the behavior of the US population up to February 14, 2021, can be separated 
into two categories – stricter social distancing and relaxed social distancing. Epochs ② and 
④ of the model in Fig.12.33(a) correspond to stricter social distancing with 𝑘𝑘2 ≈ 𝑘𝑘4 = 0.122 ±
0.001 d−1 and epochs ③ and ⑤ of the model correspond to more relaxed social distancing with 
𝑘𝑘3 ≈ 𝑘𝑘5 = 0.176 ± 0.006 d−1. Hence, the inception of both the summer and fall surges can be 
explained by a relatively modest 30% increase in the infection rate coefficient 𝑘𝑘𝑖𝑖.   
 
We were able to model vaccinations in the US by adding a fourth box 𝑣𝑣 to the model. The form 
of the resulting SIRV model (Fig.12.32) was chosen to match the vaccination program in the 
United States. COVID-19 tests were not a prerequisite for vaccination. Hence, the status of 
individuals receiving vaccinations is not included in the data. As a result, the SIRV model assumes 
that vaccinations were administered to anyone in the population that was asymptomatic at the 
time. That assumption is reflected in equation (12.100) and the corresponding equations for 𝑅𝑅𝑣𝑣,𝑖𝑖

new, 
and 𝑅𝑅𝑣𝑣,𝑟𝑟

new, so that the rate of vaccination of individuals in each of boxes 𝑠𝑠, 𝑖𝑖, and 𝑟𝑟 is directly 
proportional to the numbers currently in each respective box. This assumption overestimates the 
vaccination rate of people in box 𝑖𝑖 (because symptomatic individuals were not supposed to be 
vaccinated) and underestimates vaccinations of individuals in boxes 𝑠𝑠 and 𝑟𝑟. The model does not 
consider partially vaccinated individuals. Recall, 𝑁𝑁𝑣𝑣⋆

new is the reported number of fully vaccinated 
individuals. 
 
It was a bold assertion that the under-reporting of positive cases can be accounted for by a single 
parameter 𝑞𝑞 ≡ 𝑁𝑁/𝑁𝑁⋆, where 𝑁𝑁 is the model population size and 𝑁𝑁⋆ ≈ 3.3 × 108 is the estimated 
actual population of the United States. The use of a single 𝑞𝑞 from the beginning of the pandemic 
through May 31, 2021, cannot be supported by direct measurement of actual infections – those 
data are simply not available. The best estimate I was able to find was published by the CDC 
(2021b), but their estimates have changed over time. From a modeling perspective, the assumption 
that 𝑞𝑞 is a constant throughout the pandemic can only be justified a posteriori as it was in 
Fig.12.35 because the model was consistent with the published cases-per-day data up to May 31, 
2021.  
 
The simplest way to interpret 𝑞𝑞 is that it’s the percentage of actual infections that appear in the 
reported data. Using that as a measure of what’s happening in the actual population assumes that 
those outside of the model population – spread COVID-19, are infected by COVID-19, recover 
from COVID-19, and are vaccinated – in a similar manner to those in the model population. This 
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implies that individuals in the model population are mixed in with the rest of the actual population 
and that the rate of reported cases is proportional to the rate of actual cases. 
 
While the first three model peaks in Fig.12.33 have a somewhat similar appearance, it’s important 
to note that the third peak in Fig.12.33 is qualitatively different from the first two peaks. The first 
peak is caused by a transition from uncontrolled spread ① to the first period of stricter social 
distancing (epoch ②) that prevented the exponential dragon peak in epoch ①. The second peak 
is similarly caused by a transition from relaxed social distancing (epoch ③) to a second period 
④ of stricter social distancing that prevented the exponential dragon peak in epoch ③. In 
contrast, the third peak during the middle of epoch ⑤ of Fig.12.33 is simply the exponential 
dragon (Fig.12.12(b)) that’s intrinsic to the SIR model with a constant infection rate coefficient 
throughout the peak. Thus, the success of the model in predicting the qualitative behavior of the 
spread of COVID-19 during the holiday period and the first month and a half of 2021 is a 
significant validation of the basic SIR model and it’s SIRV variant. 
 
The fourth peak in the fitted SIRV model in epoch ⑥ is also the exponential dragon that’s intrinsic 
to the SIRV model with a constant infection rate coefficient 𝑘𝑘𝑖𝑖 = 𝑘𝑘6 = 0.349 d−1 that represents 
a further relaxation of social distancing measures in early March 2021. The fact that the fit shown 
in Fig.12.35 has essentially the same value of 𝑞𝑞 as the fit in Fig.12.33 and Fig.12.34, provides 
strong support for the SIRV model and the hypothesis that 𝑞𝑞 is approximately constant (at least 
up to the beginning of the delta epoch ⑦). The fitted value of 𝑘𝑘6 = 0.349 d−1, is about double 
𝑘𝑘3 ≈ 𝑘𝑘5 = 0.18 d−1 reflecting a significant further reduction in social distancing during epoch 
⑥, although the infection rate constant is just over double what it was during the uncontrolled 
spread in epoch ① with 𝑘𝑘1 = 0.60 d−1 at the beginning of the pandemic. 
 
The fifth peak in the pandemic corresponded to the emergence of the delta variant of the SARS-
CoV-2 virus. The SIRV model predicted that the delta dragon during epoch ⑦ would be a narrow 
peak that quickly decayed down to low infection rates because the virus would simply run out of 
people to infect (Fig.12.36). That was the prediction made in an article written at the beginning of 
the delta peak [Nelson 2021]. However, with the benefit of hindsight, we discovered in this WEB 
EDITION of CHAPTER 12 that the SIRV model failed to correctly predict the rate of infection 
during the delta surge (Fig.12.37) because of breakthrough infections that occurred during and 
after August 2021, when recovered or vaccinated people were infected with the delta variant. 
These breakthrough infections are not part of the SIRV model of Fig.12.32. The net effect was 
that more infections occurred than were possible according to the SIRV model where immunity 
(of any kind) was assumed to be permanent. Hence, we concluded that the SIRV model could not 
be used to model the pandemic after May 31, 2021.  
 
For me, this CHAPTER 12 started out with a question – could the methods we’ve developed based 
on the marble game be successfully applied to modeling the spread of COVID-19? The answer 
was much better than I had hoped. This CHAPTER 12 now serves as a capstone to the molecular 
modeling approach presented in this book. It illustrates how the approach and methods first 

http://circle4.com/biophysics


Chapter 12: COVID-19 and epidemiology (web edition) Page 112 of 124  v.4.4 © Peter Hugo Nelson 2023 
 

 Biophysics and Physiological Modeling Page 112 of 124    http://circle4.com/biophysics 

developed with the marble game can be extended from the molecular realm to viruses and the 
world of human behavior. As I worked on this unexpected chapter, I was repeatedly surprised by 
how relevant nearly all the ideas we’ve developed in this book are to epidemiology. As we 
discovered, people aren’t molecules … but sometimes they behave like them. 

12.A Appendix – The discrete-time SIR model 

Penn-CHIME  
This appendix talks about a model that I came across in early April 2020 that posed a modeling 
puzzle for me that took a few days to solve. Strictly speaking, this section isn’t needed to follow 
the flow of most of the chapter, but I think you might find it interesting – I know I did. 
 
The Penn-CHIME model was developed by Penn Medicine’s Predictive Healthcare Team to help 
hospitals and public health officials with hospital capacity planning. The Penn-CHIME model is 
similar to the FD SIR model that we developed in this chapter. Fig.12.A shows a comparison 
between the Penn-CHIME model and our FD SIR model. As you can see, they do match, but it 
took me a while to figure out how to make that happen. Let’s see what you can discover … 
 

 
Fig.12.A Excel chart showing the predictions of the Penn-CHIME discrete-time SIR model and the 
corresponding spreadsheet SIR model developed in this chapter. Solid lines are our SIR model and dotted 
lines are the corresponding Penn-CHIME model. The parameters for both models are 𝑁𝑁 = 3,600,000, δ𝑡𝑡 =
1 d, 𝜏𝜏𝑖𝑖 = 14 d, 𝑡𝑡𝑑𝑑 = 4 d, 𝑁𝑁0 = 267 and 𝑘𝑘𝑖𝑖 = 0.261 d−1. 

 
In my initial comparison between our FD SIR model and the Penn-CHIME model, I could not 
make the two models match exactly. There was always a small-but-significant difference between 
them. As a modeler, that made me very frustrated. The same models should make the same 
predictions! The only equation that seemed to be different in the Penn-CHIME model is equation 
(12.A.1), which relates their initial growth rate parameter 𝑔𝑔 to the doubling time 𝑡𝑡𝑑𝑑 for the 
initial exponential growth 
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 𝑔𝑔 = 21/𝑡𝑡𝑑𝑑 − 1 (12.A.1) 
 
This equation confused me when I first saw it, because it doesn’t match our equation (12.7) for 
the doubling time, which can be rearranged as 
 

 𝑘𝑘𝑢𝑢 =
ln 2
𝑡𝑡𝑑𝑑

 (12.A.2) 

 
There’s no way that equation (12.A.1) for 𝑔𝑔 can be rearranged to give equation (12.A.2) for 𝑘𝑘𝑢𝑢. 
Believe me, I tried – repeatedly – to make it happen, but no joy! 
 
Okay, this might be another example of me being a bit slow, but it didn’t occur to me that the 
Penn-CHIME model wasn’t the same as our SIR model. The Jones [2007] paper that I referenced 
before, used basically the same notation as the Penn-CHIME model and the Jones SIR model is – 
as far as I can tell – mathematically equivalent to our SIR model. However, I failed to notice a 
key difference – that maybe you’ll notice … The Penn-CHIME model (when translated into our 
algorithm notation) includes the following instruction for updating the number infectious 
 
 𝑁𝑁𝑖𝑖new = 𝑁𝑁𝑖𝑖old + 𝛽𝛽 ∗ 𝑁𝑁𝑖𝑖old ∗ 𝑁𝑁𝑠𝑠old − 𝛾𝛾 ∗ 𝑁𝑁𝑖𝑖old (12.A.3) 
 

 Q.12.A.1  DISCUSSION QUESTION  By mathematically comparing equation (12.A.3) with our 
equivalent equation (12.21) (with equations (12.12), (12.20) substituted in), briefly explain 
what needs to be true for our FD SIR model to be mathematically equivalent to the Penn-
CHIME model. 
Hint: Your answer should be two very simple equations relating the Penn-CHIME model 
parameters 𝛽𝛽 and 𝛾𝛾 to the model parameters included in your algorithm for Q.12.18(c). 

About what you discovered: discrete-time vs continuous-time models  
As you discovered in Q.12.A.1, Penn-CHIME equation (12.A.3) is the same as our FD SIR model 
if 

 𝛽𝛽 =
𝑘𝑘𝑖𝑖
𝑁𝑁
δ𝑡𝑡 (12.A.4) 

and 
 𝛾𝛾 = 𝑘𝑘𝑟𝑟δ𝑡𝑡 (12.A.5) 
 
Using equation (12.A.4) is mathematically correct, but in this book, we’ve been careful since 
CHAPTER 2 to make sure that all our rate constants, e.g., 𝑘𝑘something, don’t depend on the size 𝑁𝑁 
of the system. For example, the jump rate constant 𝑘𝑘 in the original marble game doesn’t depend 
on the total number of marbles 𝑁𝑁 = 𝑁𝑁1 + 𝑁𝑁2 in the game. Similarly, the association and 
dissociation rate constants 𝑘𝑘𝑎𝑎 and 𝑘𝑘𝑑𝑑 in our blood plasma oxygenation model didn’t depend on 
the number of oxygen molecules, and our drug elimination rate constant 𝑘𝑘𝑒𝑒 didn’t depend on the 
number of drug molecules. The same is true for all of the marble game’s myriad derivatives in 
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CHAPTERS 2-11  and the infection and recovery rate constants 𝑘𝑘𝑖𝑖 and 𝑘𝑘𝑟𝑟 in our UG, FP and SIR 
models. Unlike 𝛽𝛽 in equation (12.A.4) they don’t depend on the model population size 𝑁𝑁. 
 
One aspect of Penn-CHIME equation (12.A.3) that you might not have realized – I didn’t see it 
either – is that the discrete-time approach used in equation (12.A.3) implicitly assumes that the 
timestep is exactly 
 δ𝑡𝑡 = 1 d (12.A.6) 
 
Using a timestep of δ𝑡𝑡 = 1 day makes sense for the Penn-CHIME model, because the data 
reported by government agencies are usually aggregated as daily counts, e.g., “new confirmed 
cases per day” as shown in Fig.12.07 etc.  
 
However, unlike the discrete-time Penn-CHIME model, the approach taken in this book is a 
continuous-time approach. The FD methodology we first developed in CHAPTER 3 is explicitly 
aimed at treating time as a continuous variable. As we’ve discovered over and over in our FD 
models, the timestep δ𝑡𝑡 is a freely adjustable parameter that must be made sufficiently small – 
to ensure that our FD model doesn’t depend on our choice for δ𝑡𝑡. In contrast, the Penn-CHIME 
model only works with δ𝑡𝑡 = 1 d, i.e., equation (12.A.1) is only true if the timestep is exactly δ𝑡𝑡 =
1 d. Let’s see what we can discover …  
 
Okay, so now that we’ve discovered what the difference is between our continuous-time FD model 
and the discrete-time Penn-CHIME model, let’s see if we can discover why equation (12.A.1) is 
different from our equation (12.A.2) and if the two equations can be made equivalent. 
 

 Q.12.A.2  DISCUSSION QUESTION  At the beginning of the outbreak, the number susceptible 
𝑁𝑁𝑠𝑠 ≈ 𝑁𝑁 and the fraction susceptible 𝑠𝑠 ≈ 1 and the SIR model can be approximated by the 
UG model. Hence, the change δ𝑁𝑁𝑖𝑖 in the number infectious can be written as 
 

 δ𝑁𝑁𝑖𝑖 = 𝑘𝑘𝑢𝑢𝑁𝑁𝑖𝑖δ𝑡𝑡 (12.A.7) 
 
which is the same as equation (12.49) with 𝑘𝑘𝑔𝑔 = 𝑘𝑘𝑢𝑢 given by equation (12.57). Let’s define 
the dimensionless growth parameter as 
 

 𝑔𝑔 ≡ 𝑘𝑘𝑢𝑢δ𝑡𝑡 (12.A.8) 
 
and the timestep as δ𝑡𝑡 = 1 d (12.A.6).  
(a) By substituting equation (12.A.8) into equation (12.A.7) and then substituting the result 
into the FD update equation (3.31) for 𝑁𝑁𝑖𝑖, show that the ensemble average number 
infectious on day 1 according to the SIR model is  
 

 𝐼𝐼1 = (1 + 𝑔𝑔)𝐼𝐼0 (12.A.9) 
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where 𝐼𝐼0 is the number infectious (𝑁𝑁𝑖𝑖) on day 0 of the model and 𝐼𝐼1 is the number infectious 
on day 1, i.e., 𝑁𝑁𝑖𝑖old = 𝐼𝐼0 and 𝑁𝑁𝑖𝑖new = 𝐼𝐼1; 
(b) then show that number infectious on day 2 is  

 
 𝐼𝐼2 = (1 + 𝑔𝑔)𝐼𝐼1 = (1 + 𝑔𝑔)2𝐼𝐼0 (12.A.10) 

and on day 3 
 𝐼𝐼3 = (1 + 𝑔𝑔)𝐼𝐼2 = (1 + 𝑔𝑔)3𝐼𝐼0 (12.A.11) 
 
Noting the pattern in equations (12.A.10) and (12.A.11), I think it’s easy to see that the general 
formula for day 𝑡𝑡 is 
 𝐼𝐼𝑡𝑡 = (1 + 𝑔𝑔)𝑡𝑡𝐼𝐼0 (12.A.12) 
 

 Q.12.A.3  MATH QUESTION  Formally prove equation (12.A.12) by induction. 
 

 Q.12.A.4  When we reach the doubling time 𝑡𝑡 = 𝑡𝑡𝑑𝑑, the number infectious has doubled so 
that 

 𝐼𝐼𝑡𝑡𝑑𝑑 = 2𝐼𝐼0 (12.A.13) 
 
(a) By substituting 𝑡𝑡 = 𝑡𝑡𝑑𝑑 into equation (12.A.12), and then equating the result with 
equation (12.A.13) show that 
 

 𝐼𝐼𝑡𝑡𝑑𝑑 = (1 + 𝑔𝑔)𝑡𝑡𝑑𝑑𝐼𝐼0 = 2𝐼𝐼0 (12.A.14) 
so that 

 (1 + 𝑔𝑔)𝑡𝑡𝑑𝑑 = 2 (12.A.15) 
 

(b) By rearranging equation (12.A.15), show that 
 
 𝑔𝑔 = 21/𝑡𝑡𝑑𝑑 − 1 (12.A.1) 

 
which is the equation we were trying to derive. 
Hint: For exponents we know that (𝑎𝑎𝑥𝑥)1/𝑥𝑥 = 𝑎𝑎. 
 

Now that we understand how equation (12.A.1) fits into the discrete-time SIR model, let’s see if 
we can use the same approach for our continuous-time FD model. In our FD approach, the 
timestep δ𝑡𝑡 is a free parameter that should be made as small as necessary to make the solution 
independent of the size of the timestep δ𝑡𝑡 (CHAPTER 3). The implication is that the growth 
parameter 𝑔𝑔 – as defined by equation (12.A.8) – is a computed parameter (not a constant) in our 
continuous time FD model. The question you should now be asking is – can we use the same 
approach we followed in Q.12.A.2 – Q.12.A.4 to derive UG equation (12.A.2)? If we can, then 
we’ve resolved the puzzle of how the discrete-time SIR model relates to our continuous-time SIR 
model. Let’s see what we can discover … 
 

http://circle4.com/biophysics


Chapter 12: COVID-19 and epidemiology (web edition) Page 116 of 124  v.4.4 © Peter Hugo Nelson 2023 
 

 Biophysics and Physiological Modeling Page 116 of 124    http://circle4.com/biophysics 

 Q.12.A.5  DISCUSSION QUESTION  (a) Using FD equation (12.A.7) the definition of 𝑔𝑔 (12.A.8) 
and the FD update equation (3.31) for 𝑁𝑁𝑖𝑖 show that the ensemble average number 
infectious after step 1 is according to the continuous-time SIR model is 

 
 𝐼𝐼1 = (1 + 𝑔𝑔)𝐼𝐼0 (12.A.9) 
 

which is the same equation (12.A.9) that we derived in Q.12.A.2, but now 𝐼𝐼1 means the 
number infectious after step 1 rather than on day 1. 
(b) then show that number infectious after step 2 is  

 
 𝐼𝐼2 = (1 + 𝑔𝑔)2𝐼𝐼0 (12.A.10) 

and that after step 𝑛𝑛 
 𝐼𝐼𝑛𝑛 = (1 + 𝑔𝑔)𝑛𝑛𝐼𝐼0 (12.A.16) 
 

 Q.12.A.6  DISCUSSION QUESTION  When we reach the doubling time 𝑡𝑡 = 𝑡𝑡𝑑𝑑, the number 
infectious has doubled so that 

 𝐼𝐼𝑡𝑡𝑑𝑑 = 2𝐼𝐼0 (12.A.13) 
 

(a) By substituting 𝑛𝑛 = 𝑛𝑛𝑑𝑑 into equation (12.A.16), where 𝑛𝑛𝑑𝑑 is the number of steps 
required to reach the doubling time 𝑡𝑡𝑑𝑑, which in turn is given by 

 
 𝑡𝑡𝑑𝑑 = 𝑛𝑛𝑑𝑑δ𝑡𝑡 (12.A.17) 
 

Then equating that result with equation (12.A.13), show that 
 
 𝐼𝐼𝑛𝑛𝑑𝑑 = (1 + 𝑔𝑔)𝑛𝑛𝑑𝑑𝐼𝐼0 = 2𝐼𝐼0 (12.A.18) 

so that 
 (1 + 𝑔𝑔)𝑛𝑛𝑑𝑑 = 2 (12.A.19) 

 
(b) By rearranging equation (12.A.19), show that 

 
 𝑔𝑔 = 21/𝑛𝑛𝑑𝑑 − 1 (12.A.20) 
 

which is not what we were trying to show! … but it does look like equation (12.A.1). 
 
As you noticed, equation (12.A.20) is of the same form as equation (12.A.1), but with the doubling 
time 𝑡𝑡𝑑𝑑 replaced with 𝑛𝑛𝑑𝑑, the number of steps required to reach 𝑡𝑡𝑑𝑑. However, want we really want 
to show is that equation (12.A.20) is equivalent to UG equation (12.A.2). In order to do that, we’ll 
need to resort to a math trick that’s similar to one that we used in CHAPTER 9 and CHAPTER 11. 
If you like a mathematical  CHALLENGE , see if you can get from equation (12.A.20) to equation 
(12.A.2) on your own. If you get stuck, the following questions will provide you with an outline 
of how to get there. 
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 Q.12.A.7  Using the mathematical identity 2𝑥𝑥 = 𝑒𝑒𝑥𝑥 ln2, show that equation (12.A.20) can 
be rearranged to give 

 1 + 𝑔𝑔 = 𝑒𝑒(1/𝑛𝑛𝑑𝑑) ln 2 (12.A.21) 
 

so that taking the natural log of both sides yields 
 

 ln(1 + 𝑔𝑔) =
1
𝑛𝑛𝑑𝑑

ln 2 (12.A.22) 

 
 Q.12.A.8  DISCUSSION QUESTION  (a) Using the logarithmic series  

 

 ln(1 + 𝑥𝑥) = 𝑥𝑥 −
𝑥𝑥2

2
+
𝑥𝑥3

3
−
𝑥𝑥4

4
+ ⋯  (12.A.23) 

with 𝑥𝑥 = 𝑔𝑔, show that  
 ln(1 + 𝑔𝑔) ≈ 𝑔𝑔 (12.A.24) 

for 𝑔𝑔 ≪ 1.  
(b) Hence, by substituting equations (12.A.8), (12.A.24) and (12.A.17) into equation 
(12.A.22) show that equation (12.A.22) becomes  

 

 𝑘𝑘𝑢𝑢 =
ln 2
𝑡𝑡𝑑𝑑

 (12.A.2) 

 
which is equivalent to our UG model equation (12.7) or (12.A.2) when 𝑔𝑔 = 𝑘𝑘𝑢𝑢δ𝑡𝑡 ≪ 1, 
which is the same limit as when δ𝑡𝑡 → 0, which in turn is the limit in which our FD model 
becomes independent of the timestep δ𝑡𝑡 (CHAPTER 3).  

 
Note: The criterion that 𝑘𝑘𝑢𝑢δ𝑡𝑡 ≪ 1 explains why we can use a larger δ𝑡𝑡 values when 𝑘𝑘𝑢𝑢 is small 
– because it’s the product 𝑘𝑘𝑢𝑢δ𝑡𝑡 that has to be small for the continuous-time approximation implied 
by equation (12.A.2) to be valid. 

About what you discovered: our FD SIR model is the continuous-time equivalent of the 
discrete-time Penn-CHIME model 
Phew! That took a while, but the result is that we now know precisely how our continuous-time 
SIR model relates to the discrete-time SIR model used in Penn-CHIME. Even though this 
mathematical detour took us a while, and the scenery was rather dry and mathematical, it’s 
important that we look back and recognize the overall importance of what we discovered. Namely 
that there is another closely related way of implementing the SIR model that gives almost the 
same results, especially when the growth rate constant 𝑘𝑘𝑢𝑢 (or 𝑘𝑘𝑔𝑔) is small (𝑘𝑘𝑢𝑢 ≪ 1 d−1) or the 
decay rate constant is small 𝑘𝑘𝑑𝑑 ≪ 1 d−1.  
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As I discovered in late June 2020, discrete-time equation (12.A.1) also turns out to be useful if we 
want to model the entire course of the outbreak using a timestep of δ𝑡𝑡 = 1 d, which is too big for 
our continuous-time analysis during the initial exponential growth period. See the beginning of 
SECTION 12.6. Return to Section 12.6.  
 

Summary: COVID-19 and epidemiology  

Key epidemiological concepts 

Unlimited growth model 
 

 
Fig.12.03 FD diagram of a two-box epidemiological model. The two boxes in this unlimited growth (UG) 
model represent the two parts of the model population. Box 𝑠𝑠 represents people that are susceptible to the 
disease. Box 𝑖𝑖 represents people that are infectious. (Repeated from main text). 

 
• In the simplest possible unlimited growth (UG) model, the model population is split into 

two categories (boxes) susceptible and infectious.  
• 𝑁𝑁𝑖𝑖 is the number infectious and 𝑘𝑘𝑖𝑖 is the infection rate constant 
• The infection rate 𝑅𝑅𝑖𝑖  [=] d−1 is given by 

 
 𝑅𝑅𝑖𝑖 = 𝑘𝑘𝑖𝑖𝑁𝑁𝑖𝑖 (12.1) 

 
• In an optional calculus question, we showed that the analytical solution for 𝑅𝑅𝑖𝑖 according to 

the UG model is 
 𝑅𝑅𝑖𝑖 = 𝑘𝑘𝑖𝑖𝑁𝑁0𝑒𝑒𝑘𝑘𝑖𝑖𝑡𝑡    or    𝑅𝑅𝑖𝑖 = 𝑘𝑘𝑢𝑢𝑁𝑁𝑢𝑢𝑒𝑒𝑘𝑘𝑢𝑢𝑡𝑡 (12.6)(12.56) 

 
• The model’s predictions for 𝑅𝑅𝑖𝑖 can be directly compared with official data reported as 

confirmed new cases per day 
• Later we changed the notation from 𝑘𝑘𝑖𝑖 and 𝑁𝑁0 to 𝑘𝑘𝑢𝑢 and 𝑁𝑁𝑢𝑢 when we applied the unlimited 

growth model to later epochs of the pandemic in the US 
• Because the model predicts exponential growth (12.6), a plot of 𝑅𝑅𝑖𝑖(𝑡𝑡) should appear linear 

on semi-log graph – see Fig.12.05 and Fig.12.08 
• The unlimited growth model is characterized by a doubling time  

 

 𝑡𝑡𝑑𝑑 =
ln 2
𝑘𝑘𝑖𝑖

    or    𝑡𝑡𝑑𝑑 =
ln 2
𝑘𝑘𝑢𝑢

 (12.7)(12.61) 

infectious  susceptible 

 𝑘𝑘𝑖𝑖𝑁𝑁𝑖𝑖 𝒔𝒔 𝒊𝒊 
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Finite population model 

 
Fig.12.09 FD diagram of a two-box epidemiological model exhibiting limited growth. The two boxes in this 
finite population (FP) model represent the two parts of the model population that can be affected by the 
disease. Box 𝑠𝑠 represents the portion susceptible to the disease. Box 𝑖𝑖 represents the portion infectious. 
Lowercase 𝑠𝑠 is the fraction of the model population that are still susceptible to infection. (Repeated from 
main text). 

 
• The UG model assumes every person that an infectious individual encounters is still 

susceptible. However, as the infection spreads, it becomes more likely that the infectious 
person will encounter others that have been infected (box 𝑖𝑖) rather than those that haven’t 
been infected (box 𝑠𝑠). The finite population (FP) model accounts for that by changing the 
infection rate 𝑅𝑅𝑖𝑖 to be 

 𝑅𝑅𝑖𝑖 = 𝑘𝑘𝑖𝑖𝑁𝑁𝑖𝑖𝑠𝑠 (12.8) 
 

• 𝑠𝑠 [=] 1 is the susceptible fraction (note the lowercase “𝑠𝑠”) of the model population 
defined by 

 𝑠𝑠 ≡
𝑁𝑁𝑠𝑠
𝑁𝑁

 (12.9) 

 
• 𝑁𝑁𝑠𝑠 is the number susceptible and 𝑁𝑁 (with no subscript) is the total number of people in 

the model population, where 
 𝑁𝑁 = 𝑁𝑁𝑠𝑠 + 𝑁𝑁𝑖𝑖 (12.10) 

 
• The FP model is the simplest model that shows how social distancing can flatten the 𝑅𝑅𝑖𝑖(𝑡𝑡) 

curve (Fig.12.10) 

The SIR model 

 
Fig.12.11 FD diagram of the SIR epidemiological model. The three boxes represent the three parts of the 
model population that can be affected by the disease. Box 𝑠𝑠 represents the portion that’s susceptible to the 
disease. Box 𝑖𝑖 represents the portion infectious. Box 𝑟𝑟 represents the portion that’s recovered from the 
infection (or died). Sometimes this box is labeled removed – as in removed from consideration. (Repeated 
from main text). 

 

infectious  susceptible 

𝑘𝑘𝑖𝑖𝑁𝑁𝑖𝑖𝑠𝑠 
𝒔𝒔 𝒊𝒊 

infectious  recovered  susceptible 

𝑘𝑘𝑖𝑖𝑁𝑁𝑖𝑖𝑠𝑠 
𝒔𝒔 

𝑘𝑘𝑟𝑟𝑁𝑁𝑖𝑖 𝒊𝒊 𝒓𝒓 
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• The SIR model extends the FP model by adding a third box 𝑟𝑟 for those who have 
recovered.  

• 𝑘𝑘𝑟𝑟  [=] d−1 is the recovery rate constant for jumps from box 𝑖𝑖 → 𝑟𝑟 
• In the SIR model, recovery is assumed to be a Poisson process so that the average time an 

individual is infectious – the mean infectious time – is given by  
 

 𝜏𝜏𝑖𝑖 =
1
𝑘𝑘𝑟𝑟

 (12.17) 

 
• In the SIR model, the basic reproduction number ℛ0 tells us the intensity of the outbreak  

 
 ℛ0 ≡ 𝑘𝑘𝑖𝑖𝜏𝜏𝑖𝑖 (12.42) 
 

a value of ℛ0 ≤ 1 means that the disease will die out on its own and an  ℛ0 > 1 means the 
disease will spread exponentially before it starts to subside. 

• Herd immunity occurs when the number of people who’ve been removed from the 
susceptible portion reaches the herd immunity threshold ℎ𝑝𝑝 given by 

 

 ℎ𝑝𝑝 = 1 − 𝑠𝑠𝑝𝑝 = 1 −
1
ℛ0

 (12.33) 

 
assuming that 𝑘𝑘𝑖𝑖 and 𝑘𝑘𝑟𝑟 (and hence ℛ0) are fixed and where individuals are removed from 
being susceptible by either becoming infected or by effective vaccination. 

• The SIR model implicitly predicts (12.47) the final fraction susceptible 𝑠𝑠∞ if the model 
parameters 𝑘𝑘𝑖𝑖 and 𝑘𝑘𝑟𝑟 remain constant. 

• During a short period of time, when the susceptible fraction 𝑠𝑠 is approximately constant 
𝑠𝑠 ≈ 𝑠𝑠0, the full SIR model can be approximated by either exponential growth 
(12.6)(12.56) or an exponential decay  
 

 𝑅𝑅𝑖𝑖 ≈ 𝐴𝐴0𝑒𝑒−𝑘𝑘𝑑𝑑𝑡𝑡 (12.68) 
 
that can be characterized by a half-life  

 𝑡𝑡½ =
ln 2
𝑘𝑘𝑑𝑑

 (12.70) 

where 𝑘𝑘𝑑𝑑 = 𝑘𝑘𝑟𝑟 − 𝑘𝑘𝑖𝑖𝑠𝑠0 (12.65). 

Model population size 𝑵𝑵 
• The model population size 𝑁𝑁 is the portion of the actual population 𝑁𝑁⋆ that’s included in 

the model.  
• In discussing the size of the model population, it’s convenient to define  
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 𝑞𝑞 ≡
𝑁𝑁
𝑁𝑁⋆ (12.93) 

 
which is the fraction of the US population included in the model population (fraction of 
cases per day that are reported). 

• In January 2021 the CDC estimated that 1 in 4.6 total COVID–19 infections were reported 
(or 𝑞𝑞 = 21.7%) [CDC 2021].  

Making 𝒌𝒌𝒊𝒊 a variable 
• Changes in social distancing and mask wearing can be accounted for by making 𝑘𝑘𝑖𝑖 a 

variable. For example, if there are 4 distinct epochs in the model, then the infection rate 
coefficient 𝑘𝑘𝑖𝑖 is  

 
 𝑘𝑘𝑖𝑖new = 𝑘𝑘1 + 𝐹𝐹12new ∗ (𝑘𝑘2 − 𝑘𝑘1) + 𝐹𝐹23new ∗ (𝑘𝑘3 − 𝑘𝑘2) + 𝐹𝐹34new ∗ (𝑘𝑘4 − 𝑘𝑘3) (12.92) 
 

where 𝑘𝑘1, 𝑘𝑘2, 𝑘𝑘3, and 𝑘𝑘4 are the infections rate constants in the four epochs and the “𝐹𝐹”s 
are cumulative normal distributions, or Gaussian transition functions between the 
indicated epochs, which for example are given by  
 

 𝐹𝐹12new = NORM. DIST(𝑡𝑡new, 𝑡𝑡12,𝜎𝜎12, TRUE) (12.83) 
 

where 𝑡𝑡12 is the transition time between epochs ① and ②. 𝜎𝜎12 is its standard deviation. 
• The transition functions can be visualized using the corresponding probability density 

functions, e.g. 
 𝑆𝑆12new = NORM. DIST(𝑡𝑡new, 𝑡𝑡12,𝜎𝜎12, FALSE) (12.84) 

Modeling vaccination 
 

• Vaccination can be added to the SIR model FD diagram by adding a box for fully 
vaccinated individuals (Fig.12.32). The three rates leading to box 𝑣𝑣 are labeled 𝑅𝑅𝑣𝑣,𝑠𝑠, 𝑅𝑅𝑣𝑣,𝑖𝑖, 
and 𝑅𝑅𝑣𝑣,𝑟𝑟 where the subscript 𝑣𝑣 indicates vaccination and the subscripts 𝑠𝑠, 𝑖𝑖, and 𝑟𝑟 indicate 
the originating box.  
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Fig.12.32 FD diagram of a simple modification of the SIR model that accounts for vaccinations – the SIRV 
model. The four boxes represent the four parts of the model population that can be affected by the disease. 
Box 𝑠𝑠 represents the portion of the population that’s susceptible to the disease. Box 𝑖𝑖 represents the portion 
of the population that’s infectious. Box 𝑟𝑟 represents the portion of the population that has recovered from the 
infection (or died). Box 𝑣𝑣 represented the portion of the population that’s been fully vaccinated. (Repeated 
from main text). 

 
• The OWID data includes a column for 𝑁𝑁𝑣𝑣⋆ the “number fully vaccinated.” The number of 

vaccinated individuals in the model population is calculated using  
 

 𝑁𝑁𝑣𝑣new = 𝑞𝑞𝑁𝑁𝑣𝑣⋆
new (12.96) 

 
and the vaccination rate in the model population is 

 
 𝑅𝑅𝑣𝑣new = �𝑁𝑁𝑣𝑣new − 𝑁𝑁𝑣𝑣old�/δ𝑡𝑡 (12.97) 
 

The rate of vaccination of susceptible individuals in the model population can be calculated 
using 

 𝑅𝑅𝑣𝑣,𝑠𝑠
new = 𝑁𝑁𝑠𝑠old ∗ 𝑅𝑅𝑣𝑣new/�𝑁𝑁𝑠𝑠old + 𝑁𝑁𝑖𝑖old + 𝑁𝑁𝑟𝑟old�  (12.98) 

 
and similarly, for 𝑅𝑅𝑣𝑣,𝑖𝑖

new, and 𝑅𝑅𝑣𝑣,𝑟𝑟
new, which assumes that individuals in each of the three 

boxes 𝑠𝑠, 𝑖𝑖, and 𝑟𝑟 are equally likely to be vaccinated.  
 
In the SIRV model, the numbers in boxes, 𝑖𝑖 and 𝑟𝑟 can be calculated using 

 
 𝑁𝑁𝑖𝑖new = 𝑁𝑁𝑖𝑖old + �𝑅𝑅𝑖𝑖new − 𝑅𝑅𝑟𝑟new − 𝑁𝑁𝑖𝑖old ∗ 𝑅𝑅𝑣𝑣new/�𝑁𝑁 − 𝑁𝑁𝑣𝑣old�� ∗ δ𝑡𝑡 (12.103) 
  
 𝑁𝑁𝑟𝑟new = 𝑁𝑁𝑟𝑟old + �𝑅𝑅𝑟𝑟new − 𝑁𝑁𝑟𝑟old ∗ 𝑅𝑅𝑣𝑣new/�𝑁𝑁 − 𝑁𝑁𝑣𝑣old�� ∗ δ𝑡𝑡 (12.104) 
 and 
 𝑁𝑁𝑠𝑠new = 𝑁𝑁 − 𝑁𝑁𝑖𝑖new − 𝑁𝑁𝑟𝑟new − 𝑁𝑁𝑣𝑣new (12.105) 

infectious  recovered  susceptible 

𝑘𝑘𝑖𝑖𝑁𝑁𝑖𝑖𝑠𝑠 𝑘𝑘𝑟𝑟𝑁𝑁𝑖𝑖 

vaccinated 

𝑅𝑅𝑣𝑣,𝑠𝑠 
𝑅𝑅𝑣𝑣,𝑖𝑖 

𝑅𝑅𝑣𝑣,𝑟𝑟 

𝒔𝒔 

𝒗𝒗 

𝒊𝒊 𝒓𝒓 
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Note: When comparing the model variables with the published data, it’s important to recall 
that all vaccinations are reported, but only about one-in-five infections are reported. 

Corrections for discrete-time errors 
• If the SIR model is fitted to daily infection rate data 𝑅𝑅𝑖𝑖 using a timestep of δ𝑡𝑡 = 1 d, then 

the fitted model parameters need to be corrected to account for systematic errors during the 
initial exponential growth. The doubling time can be calculated using  

 

 𝑡𝑡𝑑𝑑 =
ln 2

ln(𝑘𝑘1 − 𝑘𝑘𝑟𝑟 + 1) (12.85) 

 
and the basic reproduction number can be calculated using  
 

 ℛ0 = �
ln 2
𝑡𝑡𝑑𝑑

+ 𝑘𝑘𝑟𝑟� 𝜏𝜏𝑖𝑖 (12.86) 
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