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Biophysics and Physiological Modeling 
Chapter 3: Finite difference method and O2 

v.4.6 © pHn 2020 
Introduction: Dion’s passage 
In CHAPTERS 1 and 2 we spent a lot of time talking about single molecules jumping around inside 
the body, but maybe the puzzle posed in CHAPTER 1 has been bugging you. Imagine…  
 

You’ve been talking with Barbara (Barb – a friend in an American medical college) 
about the oxygen uptake conundrum posed by the improbability of Dion’s passage 
from the air into blood plasma. She says that medical physiology textbooks explain 
that oxygen simply diffuses from the alveolus into the capillary. Normally there’s 
about 100 mmHg of oxygen in the alveolus and 40 mmHg in the blood plasma entering 
the lung. O2 diffuses from high to low until it reaches 100 mmHg in the plasma before 
it leaves the lung. Simple really!  
 

Barb’s explanation seems straightforward, but she’s talking a different language from CHAPTERS 
1 and 2. You’ve probably heard about diffusion in your biology classes and how molecules move 
(on average) from high to low concentration because of diffusion. In CHAPTER 1 we discovered 
that the marble game realistically simulates this behavior. We discovered that random Brownian 
motion of the molecules tends to spread the marbles out evenly between the two boxes (on 
average). That is, if you start with more in box 2, the marbles will tend to move to box 1 until 
they are spread out evenly (on average). Physiological examples that we discussed in CHAPTER 
1 were O2 delivery to muscle from plasma, and carbon dioxide removal from muscle to plasma.  
 
Barb gave numbers for the amount of oxygen in the alveolus and capillary – but wait – the units 
she gave are just weird! mmHg stands for “millimeters of mercury” (also called Torr), which is 
a unit of pressure and not a unit of concentration as you might have originally thought. In addition, 
her explanation doesn’t address the fact that Dion’s jump from plasma back into the air is 40 times 
more likely than the reverse jump.  
 
To make the connection between standard medical terminology and what we’ve learned about 
diffusion from the marble game, we’ll need to learn other ways of describing the number of 
molecules in each box. This is going to be a multistep process. In SECTIONS 3.1-3.3 we’re going 
to learn about the “finite difference method.” This “FD method” provides a way to talk about what 
happens in a kMC sim on average. Based on a simple “FD diagram” of the system, the FD method 
predicts how an “ensemble average” of the system will change during a short time. By adding up 
these finite differences the FD method then predicts what will happen in a kMC sim on average.  
 
At the end of SECTION 3.3, there is an optional section for readers with calculus. That optional 
calculus section makes the connection between the FD approach and traditional calculus. 
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However, the main text is written so that you can skip that section. (But if you have taken calculus, 
you should work through it to discover how the FD method leads directly to a calculus 
formulation.) In SECTION 3.4 we’ll compare the predictions of the FD method and calculus 
equation and discover that the FD timestep is a free parameter that needs to be “small” to make 
the FD method work properly. 
 
In SECTION 3.5 we’ll modify the FD method to use concentrations (rather than numbers of 
molecules). This will allow us to talk about O2 uptake using the language of biochemists. In 
SECTION 3.6 we’ll discuss equilibrium for this system and how the concentration of O2 dissolved 
in the plasma box is predicted by the partial pressure of O2 in the gas box. This equilibrium 
solubility is the basis for the use of pressure units in physiology textbooks. It will take us a little 
while, but at the end of the chapter we should be able to reconcile Barb’s description of O2 uptake 
with Dion’s passage through the alveolar wall. 

Simulations are special 
In the simulations we’ve developed so far, the basic event is the jump of an individual molecule. 
These molecular-level simulations are quite different from traditional approaches such as 
chemical kinetics that treat the amount of stuff as a continuous variable (i.e. a real-valued 
number). In our kMC simulations, the amount of stuff is discrete and we always have a whole 
number of molecules… breaking marbles in half is against the rules! 
 
In current research, molecular-level simulations are often the best way to model single-molecule 
experiments in which discrete transitions occur. We’ll return to this fascinating topic in later 
chapters… In this chapter, we’ll discover how our molecular simulations relate to more traditional 
quantitative techniques that can be used to model how molecules behave at many levels in 
physiology ranging from the molecular to the organismal. 

Terminology: simulation vs. method etc… 
In this book, we’re going to reserve the word simulation (sim) for algorithms that recreate the 
model system as realistically as possible at the level of whole (discrete) molecules and ions. In 
contrast, we’ll use terms like method, technique, or solution for numerical methods (or recipes) 
for theories that only account for the average behavior of the model system. These numerical 
approaches use continuous (real number) values for the number of molecules (fractions of a 
molecule are allowed). FYI, this distinction is not always made in bio-related literature, and you 
will sometimes find numerical solutions to mathematical models of average behavior referred to 
as “simulations.” We won’t do that as we’ll often want to compare the (more realistic) simulation 
data with theoretical predictions for the average behavior obtained using a numerical method or 
an analytical solution. 
 
In this chapter, we’ll discover how to apply “finite difference (FD)” methods to our two-box 
model systems. These FD techniques are actually very powerful and can be used in a similar 
manner for much more complicated systems…  
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3.1 Finite difference method 

 
Figure 3.1 Marble game representation of the two-box marble game. The jump rate constant 𝑘𝑘 is the same 
in both directions. 

 
After completing CHAPTERS 1 and 2 we have a fairly good idea of what our two-box model 
actually does, let’s see if we can develop a way to quantitatively predict what the molecular 
simulation will do (on average). As you know, there are only two kinds of things that can happen 
in the simulation: a marble can jump from box 1 → 2; or a marble can jump from box 2 → 1. The 
first thing we need to do is convert Figure 3.1 into a finite difference diagram of the system, see 
Figure 3.2. This FD diagram includes all the places of interest in the system – in this case box 1 
and box 2. The FD diagram in Figure 3.2 includes arrows indicating all the possible ways that the 
marbles can move from place to place within the system. Each arrow should be labeled with the 
rate at which marbles move in the indicated direction. For example, as each marble in box 1 can 
jump to box 2 with rate 𝑘𝑘 and there are 𝑁𝑁1 marbles in box 1, the total rate of jumps is just 𝑁𝑁1 times 
𝑘𝑘 marbles per second (left-to-right arrow labeled with 𝑁𝑁1𝑘𝑘). Similarly the right-to-left arrow is 
labeled with 𝑁𝑁2𝑘𝑘 – the rate of jumps from box 2 → 1. 
 

 
Figure 3.2 Finite difference (FD) diagram of the two-box marble game. 

 
As we’re interested in the number of marbles in box 1, let’s see how the two rates affect the value 
of 𝑁𝑁1 (on average). The way we’re going to do this is to imagine what happens during a short 
time interval δ𝑡𝑡. In this book, we’ll usually use the lowercase Greek letter delta δ for a small 
difference and the uppercase Greek letter delta ∆ for a change that isn’t necessarily small. As 
we’ll see, the idea of what “small” means depends on the situation. For elimination of lead from 
bone, a month would be considered a short time, whereas for water permeation through 
aquaporins, a microsecond would be a long time! The time scale depends on the mean residence 
time 𝜏𝜏 (introduced in CHAPTER 2) which is inversely proportional to the jump rate 𝑘𝑘 (i.e. 𝜏𝜏 =
1/𝑘𝑘). (Watch the video “Greek letters go green!” [Nelson 2013] for a review of the Greek 
alphabet.) 
 
By carefully considering the FD diagram above, we can write out the following equation for the 
small change in the number of molecules in box 1 δ𝑁𝑁1 during a short time δ𝑡𝑡  

 

𝟐𝟐  𝟏𝟏  

𝑁𝑁1 𝑁𝑁2 

 

𝑁𝑁 = 𝑁𝑁1 + 𝑁𝑁2 

𝑁𝑁2 = 𝑁𝑁 − 𝑁𝑁1 

𝑥𝑥1 = 𝑁𝑁1/𝑁𝑁 

𝑘𝑘 

𝑘𝑘 

 
𝑁𝑁1𝑘𝑘 

𝟏𝟏 
𝑁𝑁2𝑘𝑘 

𝟐𝟐 
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 δ𝑁𝑁1 = −𝑁𝑁1𝑘𝑘δ𝑡𝑡 + 𝑁𝑁2𝑘𝑘δ𝑡𝑡 (3.1) 

 
The first term of the right-hand side of equation (3.1) −𝑁𝑁1𝑘𝑘δ𝑡𝑡 is the (average) change in the 
average number of marbles in box 1 caused by marbles jumping from box 1 → 2. This term is the 
product of the rate 𝑁𝑁1𝑘𝑘 (marbles per second) and the short amount of time δ𝑡𝑡 (in seconds) that 
we’re considering. We’ve included the minus sign because the arrow is exiting box 1 and 𝑁𝑁1 
decreases when marbles leave box 1 and jump to box 2.  
 
Similarly, the second term on the right-hand side of equation (3.1) +𝑁𝑁2𝑘𝑘δ𝑡𝑡 is the change in the 
average number of marbles entering box 1 caused by marbles jumping from box 2 → 1. This term 
is the product of the rate 𝑁𝑁2𝑘𝑘 at which marbles enter box 1 from box 2 (on average) and the short 
time interval δ𝑡𝑡 that we’re considering. The plus sign means that these jumps increase the number 
of marbles in box 1. Equation (3.1) has two terms, one for each arrow (entering or leaving box 1) 
in the FD diagram. Whenever you’re writing out an equation like (3.1) there should always be one 
term for each arrow that starts or ends on the place of interest (in this case box 1). 
  
By doing some algebra, equation (3.1) can be rearranged to give 
 
 δ𝑁𝑁1 = (𝑁𝑁2 − 𝑁𝑁1)𝑘𝑘δ𝑡𝑡 (3.2) 

 
Equation (3.2) is a finite difference equation (FD equation) that tells us how much 𝑁𝑁1 changes 
(on average) during a short but finite amount of time δ𝑡𝑡. This equation tells us a great deal about 
the system. We can get Excel to use this equation to calculate how 𝑁𝑁1 changes after a timestep δ𝑡𝑡 
using the FD update instruction 
 
 𝑁𝑁1new = 𝑁𝑁1old + δ𝑁𝑁1new (3.3) 

 
it says that the new average number of marbles 𝑁𝑁1new is the old value 𝑁𝑁1old plus the small change 
δ𝑁𝑁1new predicted by equation (3.2).  
 
In this FD method, δ𝑡𝑡 is a freely adjustable parameter.  We can change δ𝑡𝑡 to any small value 
we choose. While this FD approach seems fairly simple, we can use it to model (almost) all 
physiological systems!  
 

 Q.3.1  DISCUSSION QUESTION  (a) Using equations (3.2) and (3.3)  write out a complete finite 
difference algorithm, including unit check(s), to calculate how 𝑥𝑥1 changes (on average) 
with time 𝑡𝑡 in our two-box model with 𝑁𝑁 = 10, 𝑘𝑘 = 0.05 s−1, δ𝑡𝑡 = 0.5 s and 𝑥𝑥0 = 0.3.  
Hint: Step 1 of your algorithm should look something like Table 3.1. (The “comment or 
explanation” is not required in your answer.) 
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Table 3.1 Step 1 of the FD algorithm for the two-box marble game 
Instruction Comment or explanation 

𝑆𝑆𝑡𝑡𝑆𝑆𝑝𝑝new = 𝑆𝑆𝑡𝑡𝑆𝑆𝑝𝑝old + 1 new 𝑆𝑆𝑡𝑡𝑆𝑆𝑝𝑝 is the previous value plus 1 

𝑡𝑡new = 𝑡𝑡old + δ𝑡𝑡 increment clock using timestep δ𝑡𝑡 

δ𝑁𝑁1new = (𝑁𝑁2old − 𝑁𝑁1old) ∗ 𝑘𝑘 ∗ δ𝑡𝑡 calculate change in 𝑁𝑁1 using equation (3.2) 

𝑁𝑁1new = 𝑁𝑁1old + δ𝑁𝑁1new calculate the new 𝑁𝑁1 from the previous 𝑁𝑁1 using (3.3) 

 𝑁𝑁2new = 𝑁𝑁 −𝑁𝑁1new calculate the new 𝑁𝑁2 from the new 𝑁𝑁1 

𝑥𝑥1new = 𝑁𝑁1new/𝑁𝑁 calculate new fraction in box 1 

 
Note: We’ve used the “∗” symbol for multiplication to remind us that we must use it in 
Excel. 
(b) Using your algorithm, calculate by hand what happens for steps 0, 1, 2 and 3 and write 
your answer in the form of an output table.  
Hint: As usual, you should do parts (a) and (b) of this question together. It’s easier that 
way. 

 
 Q.3.2   (a) Briefly explain in words why 𝑁𝑁2new = 𝑁𝑁 − 𝑁𝑁1new. 
(b) Briefly explain in words what the combination of equations (3.2) and (3.3) allows us to 
predict. 

  
 Q.3.3  Implement your algorithm in a new Excel workbook (i.e. start with an empty file) 
and check that it generates exactly the same sequence that you calculated in Q.3.1(b). Then 
change the initial fraction in box 1 to 𝑥𝑥0 = 1 and include enough steps in your numerical 
method to show the approach to equilibrium. Plot 𝑥𝑥1 versus time and record your graph.  
Hint: Your graph should look somewhat similar to the kMC graphs in CHAPTER 2. 

About what you discovered: broken marbles 
One of the things you should have noticed is that 𝑥𝑥1 is now a smooth-looking function of time in 
the FD method. It’s not random at all! Unlike the original marble game and other kMC sims, 
fractions of marbles are allowed in the FD method. In other words, the FD method is 
deterministic (not random), whereas the kMC sims are stochastic (random).  

FD method predicts ensemble average of kMC 
The FD method and kMC sim are two ways of modeling the same two-box system. However, the 
FD method is very different from kMC sims. In the FD method fractions of a marble are allowed 
and there isn’t any randomness at all! So how can they be compared? Our hypothesis is that the 
FD method predicts the ensemble average behavior of the kMC sim. This begs the question: 
what exactly is an ensemble average? 
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In musical terminology, a “string ensemble” is a group of musicians all playing the same music. 
Our use of the term ensemble is similar. Imagine a classroom full of students all playing the marble 
game using the same rules and the same system parameters at the same time. Each student has 
their own two boxes, their own ten marbles and their own ten-sided die. The ensemble average 
is the average of all the students’ 𝑥𝑥1 values. This average is calculated after all the students have 
completed the same number of 𝑠𝑠𝑡𝑡𝑆𝑆𝑝𝑝s. In general, an ensemble average is an average over a large 
number of identical (but independent) systems. In our example, the systems are statistically 
independent because each student rolls their own die and the result in one student’s game can’t 
affect the outcome in any other student’s game.  
 
In CHAPTER 2 you developed a spreadsheet that plotted a graph of how 𝑥𝑥1 approached equilibrium 
for a single system. When you press DELETE in a blank cell, Excel generates a statistically 
independent copy of the sim. When you press DELETE it’s like seeing a different student’s marble 
game. By pressing DELETE repeatedly, you can get a good feel for what happens on average just 
like an instructor walking around the classroom observing multiple student marble games. Thus, 
if we have a spreadsheet, that shows a kMC sim and the corresponding FD prediction on the same 
graph we can test our hypothesis that the FD method predicts the ensemble average behavior of 
the system by pressing DELETE in a blank cell and visually checking that the ensemble average 
behavior (of many kMC sims) matches the FD prediction for 𝑥𝑥1 for each value of 𝑡𝑡. At each value 
of time 𝑡𝑡 you expect to see roughly the same number of kMC sims with higher and lower than 
expected values of 𝑥𝑥1. 
 
Save and close your spreadsheet answer to Q.3.3. Then open the preformatted spreadsheet 
BPM.Ch03_FD_Method.xlsx, which is based on the kMC spreadsheet you saved in Q.2.7. Make 
sure that the parameters are set to 𝑁𝑁 = 500, 𝑘𝑘 = 0.05 s−1, 𝑥𝑥0 = 1 (and 𝑁𝑁steps = 2000). Hint: 
As always, don’t forget to rescale the axes so that you can see everything properly, then save your 
spreadsheet with a new file name, e.g. BPM.Q.3.4.xlsx. We’re now going to add the FD method 
to this spreadsheet. Rather than trying to copy from one spreadsheet to another, we’re going to 
type new FD stuff into the kMC spreadsheet in an FD method table.  
 
Using your FD algorithm from Q.3.1, fill out the FD method table in the spreadsheet to implement 
the FD method. As you’ll see, the FD method table contains new columns for the FD variables 𝑡𝑡, 
δ𝑁𝑁1, 𝑁𝑁1, 𝑁𝑁2 and 𝑥𝑥1. Note: You should share the system parameters 𝑁𝑁, 𝑘𝑘, and 𝑥𝑥0 between the 
kMC simulation and the FD method, but the timestep parameters should be different: ∆𝑡𝑡 is a 
calculated parameter for the kMC sim (see equation (2.1)); and δ𝑡𝑡 = 0.2 s (added in column A 
of the spreadsheet) is a free parameter in the FD method. Make sure that δ𝑡𝑡 is used to calculate 
𝑡𝑡 in the FD method table (see cell L4 in the preformatted spreadsheet). 
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About what you discovered: one spreadsheet at a time 
As mentioned in CHAPTER 2, working with spreadsheets is not like working with text documents. 
When you try to copy cells from one sheet to another (or from one Excel file to another) Excel 
makes a guess for how the links to other cells should change. However, once the algorithm is 
written, it’s easy for us to write the spreadsheet from scratch and get the inter-cell links correct. 
To avoid the confusion I’ve seen with some students, my advice is to “take it one 
spreadsheet at a time.” Use only a single sheet in a single spreadsheet file and 
remember to save a new copy of the spreadsheet to a new filename whenever you get 
something working correctly. That way if you or your cat messes up, the solution is 
easy: simply open the version you last saved, which was working correctly! So, don’t 
forget to save your work early and often!  
 

 Q.3.4  When your spreadsheet is working correctly, there should be a new series in the 
graph that shows the FD prediction for 𝑥𝑥1. Set the time axis to have a fixed maximum of 
𝑡𝑡 = 80 s and the 𝑥𝑥1-axis to a fixed maximum of 𝑥𝑥1 = 1.The smooth FD curve and the 
wriggly kMC curve should appear fairly similar (with 𝑁𝑁 = 500, 𝑘𝑘 = 0.05 s−1, 𝑥𝑥0 = 1). In 
your graph, look at a particular time e.g. 𝑡𝑡 = 10 s and press DELETE about ten times while 
comparing the kMC value to the FD value at that time. The kMC value at 𝑡𝑡 = 10 s should 
be higher sometimes and lower other times.  
(a) Does the FD method appear to successfully predict the ensemble average value of the 
kMC sim at 𝑡𝑡 = 10 s? I.e. briefly describe how the kMC values are distributed about the 
FD prediction.  
(b) How about at 𝑡𝑡 = 20 s?  Does the ensemble average of the kMC sim appear to match 
the FD prediction? Briefly describe what you observed. 
(c) How about at 𝑡𝑡 = 40 s and 𝑡𝑡 = 80 s? 

 
 Q.3.5  DISCUSSION QUESTION  Repeat the procedure of Q.3.4 for 𝑁𝑁 = 1000, 100, 50, 10 
marble games.  
(a) Does the ensemble average of the kMC sim appear to match the FD predictions? Briefly 
summarize what you saw.  
Hint: This question is not asking about an individual kMC sim, it’s asking about what 
happens if you average a bunch of them. If you think you see a trend, hit DELETE a bunch 
more times and see if it persists.  
(b) Does the FD curve depend on the number of marbles 𝑁𝑁?  
(c) For a given value of 𝑁𝑁, each individual sim will have random deviations away from the 
FD curve. Summarize how the average sizes of these fluctuations vary as 𝑁𝑁 is changed.  
(d) Record a graph showing the kMC, FD and equilibrium values for 𝑁𝑁 = 500.  

About what you discovered: theory vs. sim 
The FD model and the kMC sim are both of the same physical system. Your graph should look 
something like Figure A3.1. Hopefully, by carefully comparing the FD prediction with a number 
of independent kMC sims, you’ve convinced yourself that if you averaged a large number of 
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sims, the ensemble average (average of many independent systems) would look similar to the FD 
prediction (which doesn’t depend on 𝑁𝑁). Your spreadsheet should have helped you discover this 
fact… for yourself. 
 
But why do systems with a small number of particles 𝑁𝑁 have the same ensemble average behavior 
as large systems? Well, from a kinetic point of view, each particle in the simulation is 
independent of the others and does exactly the same thing no matter how many other particles 
there are in the system – each particle always jumps to the other box with rate 𝑘𝑘 per second (and 
hence has the same mean residence time 𝜏𝜏). This means that the approach to equilibrium (on 
average) does not depend on the number of marbles 𝑁𝑁. In SECTION 3.2, we’ll discover that the 
FD formulation of the problem provides a quantitative explanation for why the ensemble average 
of systems of any number of marbles 𝑁𝑁 approaches equilibrium at the same rate. 
 
Another characteristic of the sims that you should have noticed is that the sim fluctuations (away 
from the FD curve) get larger for small systems. This increase in variability (for small systems) 
means that they are sometimes able to reach the equilibrium value of 𝑥𝑥1 = 0.5 significantly earlier 
than the FD prediction (as in Figure A3.1) and other times they reach equilibrium later than 
predicted.  

Predicting equilibrium and steady state 
FD equation (3.2) is a general equation that tells us how the system changes during a short time. 
It applies at any time, including if we wait long enough that the system has reached equilibrium 
and the ensemble average properties of the system are steady and don’t change with time. This 
steady state is described mathematically by  
 
 δ𝑁𝑁1 = 0 (3.4) 

 
because the state variable 𝑁𝑁1 is constant and doesn’t change from step to step. However, because 
equation (3.2) is also true at steady state, we can set δ𝑁𝑁1 in equation (3.4) equal to δ𝑁𝑁1 in equation 
(3.2), to obtain  
 δ𝑁𝑁1 = 0 = (𝑁𝑁2 − 𝑁𝑁1)𝑘𝑘δ𝑡𝑡 (3.5) 

 
Dividing equation (3.5) by 𝑘𝑘δ𝑡𝑡 yields 0 = 𝑁𝑁2 − 𝑁𝑁1 (yes, it’s legal to say 0/𝑘𝑘δ𝑡𝑡 = 0). The 
equation 0 = 𝑁𝑁2 − 𝑁𝑁1 rearranges to give the condition for steady state 
 
 𝑁𝑁1 = 𝑁𝑁2 (3.6) 

 
Equation (3.6) confirms something that we’ve already discovered: at steady state, there are an 
equal number of particles in each box on average. However, the method that we just used to prove 
equation (3.6) is extremely powerful! This approach can be used for any system that can be 
modeled by FD equations – and that’s just about everything! 
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About what you discovered: finding your level… 
What we just did was to find the answer to the bonus part of Q.2.9 in CHAPTER 2 using our FD 
model of the marble game. The FD method provides a simple explanation for the equilibrium 
values of 𝑁𝑁1 and 𝑁𝑁2 in the original marble game. At equilibrium, the ensemble average number 
of marbles in each box does not change with time (i.e. δ𝑁𝑁1 = 0). This implies that the rate at 
which marbles enter box 1 is equal to the rate at which they leave. Entrance (2 → 1) occurs at 
rate 𝑁𝑁2𝑘𝑘 and exit (1 → 2) occurs at rate 𝑁𝑁1𝑘𝑘. At equilibrium these two rates are the same 𝑁𝑁1𝑘𝑘 =
𝑁𝑁2𝑘𝑘, which means that the number in each box is the same 𝑁𝑁1 = 𝑁𝑁2 (because the jump rate 
constants are the same for each box). 
 
Most physiological systems “try” to find their own levels in a similar way. In this book, we’ll 
derive FD equations that completely describe how the state variables of model physiological 
systems (e.g. 𝑁𝑁1 and 𝑁𝑁2) change with time.  We can then find the steady-state values of the state 
variables by finding when the differences (e.g. δ𝑁𝑁1 and δ𝑁𝑁2) are zero. For example, in SECTION 
3.4, we’ll derive FD equations for blood plasma oxygenation in the lungs. In SECTION 3.5, we’ll 
discover the maximum O2 concentration in blood plasma leaving the lungs – just by setting the 
change in blood plasma concentration to zero (δ𝑐𝑐𝑝𝑝 = 0).  

Technicality – steady state vs. equilibrium 
At this point, it’s worthwhile identifying an important technicality. When we set all the differences 
in the state variables to zero, we always calculate a steady-state solution. This is the definition of 
steady state – the system ensemble average is steady and so does not change with time (or an 
individual system does not change on average, if you watch it for a long time). However, steady 
state does not always imply equilibrium. A mature living organism reaches a steady state when its 
average properties do not change (significantly) over time. However, a living organism is not in 
a state of thermodynamic equilibrium. It’s constantly consuming resources and producing waste 
products. While the organism does not change with time, its environment does. The word 
equilibrium is reserved for a system at steady state that produces no net change in its environment. 
At equilibrium, both the system and its environment are at steady state.  

About what you discovered: fluctuations at equilibrium… 
The finite difference model (equation (3.2)) predicts that box 1 and box 2 will have exactly the 
same number of molecules (on average) at equilibrium. However, as we’ve already discovered, 
equilibrium is a dynamic process with particles being randomly exchanged between the two 
boxes. As a result, state variables such as 𝑥𝑥1 fluctuate at equilibrium in the sims and small systems 
have larger fractional fluctuations than large systems. This is a significant difference between the 
sim and FD approaches. The molecular simulations are more realistic. Fluctuations, such as those 
seen in the 𝑁𝑁 = 10 system can have significant effects in some circumstances – e.g. spontaneous 
action potential generation by a small number of ion channels randomly opening at the same time. 
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3.2 – FD solution is independent of N  
In Q.3.5 you should have noticed that the FD prediction for the ensemble average behavior of the 
system does not depend on the number of marbles 𝑁𝑁. But why not? In other words, why doesn’t 
the FD solution depend on 𝑁𝑁, when the kMC sim behavior clearly does? To answer that question, 
let’s rewrite FD equation (3.2) using only 𝑥𝑥1 (instead of using 𝑁𝑁1, 𝑁𝑁2 and 𝑁𝑁). Figure 3.1 includes 
all the equations that we’ll need. Let’s take it one step at a time.  
 

 Q.3.6  Show that equation (3.2) can be combined with equation (1.1) to calculate δ𝑁𝑁1 
without needing to keep track of 𝑁𝑁2 explicitly.  
Hint: A good answer is… Solving equation (1.1) for 𝑁𝑁2 gives 𝑁𝑁2 = 𝑁𝑁 − 𝑁𝑁1, which can be 
substituted into equation (3.2) to give δ𝑁𝑁1 = [(𝑁𝑁 − 𝑁𝑁1) − 𝑁𝑁1]𝑘𝑘δ𝑡𝑡, which can then be 
rearranged to give 

 δ𝑁𝑁1 = (𝑁𝑁 − 2𝑁𝑁1)𝑘𝑘δ𝑡𝑡 (3.7) 
 

 Q.3.7  Using the definition of the finite difference of the fraction 𝑥𝑥1 in box 1: δ𝑥𝑥1 ≜
𝑥𝑥1new − 𝑥𝑥1old and the definition of the fraction in box 1: 𝑥𝑥1new ≜ 𝑁𝑁1new/𝑁𝑁 (for both the old 
and new values of 𝑥𝑥1), show that 

 δ𝑥𝑥1 =
δ𝑁𝑁1
𝑁𝑁

 (3.8) 

 
Hint: You will also need to recognize that δ𝑁𝑁1 ≜ 𝑁𝑁1new − 𝑁𝑁1old (also by definition). 
 
 Q.3.8  Using equations (3.7) and (3.8) and the definition (2.6) that 𝑥𝑥1 ≜ 𝑁𝑁1/𝑁𝑁, show that  

 
 δ𝑥𝑥1 = (1 − 2𝑥𝑥1)𝑘𝑘δ𝑡𝑡 (3.9) 

 
Equation (3.9) is the finite difference equation for 𝑥𝑥1 that we were looking for. You should notice 
that equation (3.9) does not contain 𝑁𝑁. This means that the value of 𝑥𝑥1 predicted by the FD method 
does not depend on the number of marbles 𝑁𝑁. This equation shows us that the change in the 
fraction in box 1 δ𝑥𝑥1 only depends on the current fraction in box 1 (i.e. 𝑥𝑥1) and not on how many 
marbles are in the system (i.e. 𝑁𝑁).  
 

 Q.3.9  Using equation (3.9), derive an expression for the equilibrium value of 𝑥𝑥1.  
Hint: As always, equilibrium implies that the ensemble average properties of the system 
don’t change from step to step, implying that the ensemble average equilibrium value of 
𝑥𝑥1 does not change. This means that δ𝑥𝑥1 = 0 in equation (3.9). To derive the answer, 
replace δ𝑥𝑥1 with 0 and then solve the resulting equation for the equilibrium fraction in box 
1. 

 
 Q.3.10  (a) Using equation (3.9) write out a complete finite difference algorithm, including 
unit check(s), to calculate how 𝑥𝑥1 changes (on average) with time in our two-box model 
with 𝑘𝑘 = 0.05 s−1, δ𝑡𝑡 = 2 s and 𝑥𝑥0 = 1. 
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(b) By hand, calculate steps 0, 1, 2 and 3 of your finite difference algorithm and write your 
answer in the form of an output table.  
1st Hint: Your new algorithm should not include 𝑁𝑁1, 𝑁𝑁2 or 𝑁𝑁 (anywhere!).  
2nd Hint: As usual, you should do parts (a) and (b) of this question together. It’s easier that 
way. This is your last reminder. 

About what you discovered: on average the number of marbles doesn’t matter 
What we just discovered is a quantitative explanation for why the ensemble-average behavior of 
the system (as described by 𝑥𝑥1) does not depend on the number of marbles. One implication of 
this is that we can use the FD method to describe the ensemble-average behavior of systems as 
small as 𝑁𝑁 = 1. We’ll return to this topic of modeling ensemble-average single-molecule behavior 
in later chapters.  
 

 Q.3.11  DISCUSSION QUESTION  (a) Using the fraction of marbles in box 1, 𝑥𝑥1, briefly describe 
the (i) similarities and (ii) differences between an ensemble of nine 𝑁𝑁 = 10 marble games 
(think 9 students playing the marble game as a group and averaging) and one 𝑁𝑁 = 90 
marble game (each with the same jump rate constant 𝑘𝑘).  
(b) Briefly explain why the (physical) time 𝑡𝑡eq required to reach equilibrium does not 
depend on the number of marbles 𝑁𝑁, but  
(c) the number of steps 𝑁𝑁steps does depend on 𝑁𝑁. 

About what you discovered: do you speak math? 
An excellent answer to Q.3.11(b)&(c) uses the language of math. As we noted in the caption of 
Figure A3.1, the marble game is close to equilibrium after about two jumps per marble. The 
average time it takes a marble to jump is 𝜏𝜏 = 1/𝑘𝑘 = 20 s. Using this information, we can write 
out a math answer for Q.3.11(b)  
 𝑡𝑡eq = 2𝜏𝜏 (3.10) 
 
which does not depend on 𝑁𝑁. However, we also know that the time 𝑡𝑡eq is the kMC timestep Δ𝑡𝑡 
times the number of steps 𝑁𝑁steps, i.e. 𝑡𝑡eq = 2𝜏𝜏 = 𝑁𝑁stepsΔ𝑡𝑡. Solving for 𝑁𝑁steps (and noting from 
equation (2.2) that Δ𝑡𝑡 = 1/𝑁𝑁𝑘𝑘) gives 

 𝑁𝑁steps =
2𝜏𝜏
 Δ𝑡𝑡

=
2 �1
𝑘𝑘�

� 1
𝑁𝑁𝑘𝑘�

= 2𝑁𝑁 (3.11) 

 
Hence in answer to Q.3.11(c), the number of kMC steps required reach equilibrium is 
approximately twice the number of marbles.  
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3.3 Approach to equilibrium – a new state variable u 
The right-hand side of equation (3.9) (yes, you should go back and look at it now) has a factor in 
parentheses that tells us how far the system is away from equilibrium. Using this factor, we can 
define a new state variable 
 𝑢𝑢 = 2𝑥𝑥1 − 1 (3.12) 

 
This is just the negative of the factor in parentheses. Why the negative? Well, when defined this 
way, 𝑢𝑢 has some properties that turn out to be quite convenient: 
 

• 𝑢𝑢 = 0 at equilibrium. 
• 𝑢𝑢 = 1 when 𝑥𝑥1 = 1. 
• 𝑢𝑢 = −1 when 𝑥𝑥1 = 0. 

 
 Q.3.12  You might have noticed that equation (3.12) isn’t very intuitive. By substituting 
the definition of 𝑥𝑥1 into equation (3.12) and then substituting the definition 𝑁𝑁 = 𝑁𝑁1 + 𝑁𝑁2 
show that 𝑢𝑢 can be rewritten as 

 

 𝑢𝑢 =
2𝑁𝑁1 − 𝑁𝑁

𝑁𝑁
=
𝑁𝑁1 − 𝑁𝑁2

𝑁𝑁
 (3.13) 

 
Hint: To do that you should start by writing equation (3.12), then substitute in the 
definition of 𝑥𝑥1 (i.e. 𝑥𝑥1 ≜ 𝑁𝑁1/𝑁𝑁). After some algebra you should be able to get to the 
middle expression. You can then substitute the definition 𝑁𝑁 = 𝑁𝑁1 + 𝑁𝑁2 into the middle 
expression. Remember, the purpose of a show that question is not to get to the answer (it’s 
given to you already) the purpose is to communicate your understanding of how to get to 
the answer – so carefully write out your answer like an argument and don’t skip steps. 
 

The numerator in equation (3.13) is the difference between the numbers in each box and 𝑁𝑁 is the 
total number. Hence, according to this equation, we have just figured out that 𝑢𝑢 is the fractional 
distance away from equilibrium. Positive values of 𝑢𝑢 mean that there are more particles in box 1 
and negative values of 𝑢𝑢 mean that there are more particles in box 2. 𝑢𝑢 is a simple example of an 
order parameter.  

The order parameter 𝒖𝒖 
Many everyday English words take on special technical meanings in physics (e.g. for mechanical 
systems, “work” is defined as “force times distance”). The “order” in order parameter is also a 
technical term that needs to be carefully discussed. Most people would agree that clothes neatly 
folded and packed into a suitcase are more ordered than the same clothes crumpled up and 
randomly jammed into the same suitcase. A deck of playing cards, fresh out of the wrapper, is 
ordered in a particular manner, but shuffling the cards randomizes the deck making it disordered. 
The meaning of order for the marble game is similar, but the marbles in our game have only one 
property – location, which is specified by 𝑁𝑁1 the number of marbles in box 1 (or by 𝑥𝑥1 or now by 
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𝑢𝑢). For the marble game, order is defined by how well we know where the marbles are. When 
𝑢𝑢 = 1 we know the location of each and every marble – they are all in box 1. As a result, the 
marble game is ordered like a fresh deck of playing cards. However, when 𝑢𝑢 = 0, the marbles 
are as mixed up as possible and the marble game is as disordered as it possibly can be – because 
any marble has an even chance of being in either box.  
 

 Q.3.13  DISCUSSION QUESTION  What can be said about the location of a marble in an 𝑁𝑁 =
100 marble game when 
(a) 𝑢𝑢 = 1 
(b) 𝑢𝑢 = −1 
(c) 𝑢𝑢 = 0 
(d) 𝑢𝑢 = 0.7 
(e) 𝑢𝑢 = −0.3 

About what you discovered: normalized order 
In statistical physics, the words order and disorder are technical terms that apply to molecular 
systems. In our marble game we always know that the marbles are in one of two boxes. 𝑢𝑢 = 1 
(maximum order) is similar to a fresh deck of playing cards because we have the most 
information about where an individual marble is located (we are 100% sure that each marble is 
located in box 1). 𝑢𝑢 = 0 (completely disordered) is similar to a well-shuffled deck of cards 
because we have the least information about where an individual marble is located (every marble 
has a 50/50 chance of being in box 1).  
 
According to the IUPAC Compendium of Chemical Terminology Gold Book (Version 2.3.2 
2012-08-19) http://goldbook.iupac.org/PDF/goldbook.pdf definition (p.1037): 
  

order parameter 
A normalized parameter that indicates the degree of order of a system. An order 

 parameter of 0 indicates disorder; the absolute value in the ordered state is 1. 
  
Note: When all the marbles are in box 2, 𝑢𝑢 = −1 and the absolute value is |𝑢𝑢| = 1 (completely 
ordered).  

FD solution for the order parameter 𝒖𝒖 
Our task in this section is to rewrite the finite difference equation (3.9) in terms of 𝑢𝑢. To do this 
we need an equation for 𝑥𝑥1in terms of u and an equation for δ𝑥𝑥1 in terms of δ𝑢𝑢.  
 

 Q.3.14  By definition, δ𝑢𝑢 ≜ 𝑢𝑢new − 𝑢𝑢old. Using equation (3.12) for both 𝑢𝑢new and 𝑢𝑢old 
show that: 

 δ𝑢𝑢 = 2δ𝑥𝑥1 (3.14) 
 

Hint: the definition of δ𝑥𝑥1 is δ𝑥𝑥1 ≜ 𝑥𝑥1new − 𝑥𝑥1old. 
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 Q.3.15  By substituting equation (3.9) into equation (3.14) show that 

 
 δ𝑢𝑢 = −2𝑘𝑘(2𝑥𝑥1 − 1)δ𝑡𝑡 (3.15) 

 
 Q.3.16  Using equation (3.15) and the definition of 𝑢𝑢 (3.12) show that 

 
 δ𝑢𝑢 = −2𝑘𝑘𝑢𝑢δ𝑡𝑡 (3.16) 

 
…which is the finite difference equation for 𝑢𝑢 that we were looking for. 

About what you discovered: proportional change 
Equation (3.16) is a finite difference equation for a quantity 𝑢𝑢 that changes by an amount δ𝑢𝑢 that 
is proportional to itself (i.e. the change δ𝑢𝑢 in 𝑢𝑢 is proportional how big 𝑢𝑢 is). If 𝑢𝑢 is twice as big 
– the change is also twice as big, or conversely, if 𝑢𝑢 is twice as small – the change is twice as 
small. This type of situation occurs in an amazingly wide range of situations ranging from 
unconstrained population growth to drug elimination and radioactive decay, and (as we have just 
seen) it also applies to the marble game if we consider the order parameter 𝑢𝑢 that tells us how far 
away we are from equilibrium. 
 
The minus sign in equation (3.16) means that the change always makes 𝑢𝑢 smaller. This means that 
as time goes by, the system will (on average) tend towards a state in which 𝑢𝑢 is zero. As we’ll see 
next, this produces an exponential decay in 𝑢𝑢 that is characteristic of many processes that have a 
stable equilibrium value corresponding to 𝑢𝑢 = 0. If the minus sign was missing from equation 
(3.16) then the change would always make the quantity bigger – and the bigger the quantity – the 
bigger the change. This occurs during unconstrained population growth where the growth rate of 
bacteria is proportional to the number already present. This results in an unstable exponential 
growth.  
 
If we make δ𝑡𝑡 infinitesimally small (i.e. extremely small), the solution to equation (3.16) can be 
found using calculus to give the following formula for 𝑢𝑢 as a function of time.  
 
 𝑢𝑢 = 𝑢𝑢0𝑆𝑆−2𝑘𝑘𝑘𝑘 (3.17) 

 
where 𝑢𝑢0 is the value of 𝑢𝑢 at time 𝑡𝑡 = 0. We can use this theory equation (3.17) to calculate u 
(and hence 𝑥𝑥1 and 𝑁𝑁1) using a calculator at any time we like… no need to write an FD spreadsheet. 
Obviously, if we can find an analytical solution like equation (3.17) then it is definitely preferable 
to an FD solution (but not kMC). However, analytical solutions are only available for very simple 
problems. As we’ll see later, more complex problems (like diffusion and models of the spread of 
COVID-19) can be solved in Excel using FD methods even though no simple analytical solution 
has ever been found! 
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About what you discovered: calculus solution for 𝒖𝒖(𝒕𝒕) 
This section is included for students who have taken a year of calculus at the university level. If 
you haven’t taken calculus you can skip this derivation… its main purpose is to show how the 
analytical solution (3.17) can be derived from the FD equation (3.16) using basic calculus. This 
is actually a very cool and useful mathematical trick that shows why calculus is definitely worth 
taking if you have the time and the inclination. 
 
If you have taken calculus, the following section shows one of the few problems in biophysics 
and physiology that can be solved exactly using calculus. Luckily it’s one that is both important 
and ubiquitous (common) – first-order kinetics – as seen in drug elimination, radioactive decay, 
etc. … 
 
In the traditional chemistry approach, calculus is used to model chemical kinetics. We can get to 
the calculus formulation of our two-box simulation by starting with the finite difference equation 
we derived above 
 δ𝑢𝑢 = −2𝑘𝑘𝑢𝑢δ𝑡𝑡 (3.16) 
 
Dividing both sides of equation (3.16) by δ𝑡𝑡 gives 
 

 δ𝑢𝑢
δ𝑡𝑡

= −2𝑘𝑘𝑢𝑢 (3.18) 

 
Taking the limit δ𝑡𝑡 → 0 results in the derivative of 𝑢𝑢 with respect to time 𝑡𝑡 
 

 lim
δ𝑘𝑘→0

δ𝑢𝑢
δ𝑡𝑡

=
d𝑢𝑢
d𝑡𝑡

 (3.19) 

 
Substituting this limit into equation (3.18) produces the differential equation,  
 

 d𝑢𝑢
d𝑡𝑡

= −2𝑘𝑘𝑢𝑢 (3.20) 

 
Multiplying both sides of equation (3.20) by d𝑡𝑡 and dividing by 𝑢𝑢 collects all the “𝑢𝑢”s on the left 
and all the “𝑡𝑡”s  on the right. This is method is known as separation of variables. 
 

 d𝑢𝑢
𝑢𝑢

= −2𝑘𝑘d𝑡𝑡 (3.21) 

 
Integrating from 𝑡𝑡′ = 0 (and 𝑢𝑢′ = 𝑢𝑢0) to up to 𝑡𝑡′ = 𝑡𝑡 (and 𝑢𝑢′ = 𝑢𝑢), gives 
 

 �
d𝑢𝑢′
𝑢𝑢′

𝑢𝑢

𝑢𝑢0
= � −2𝑘𝑘d𝑡𝑡′

𝑘𝑘

0
 (3.22) 
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where 𝑢𝑢′ and 𝑡𝑡′ are dummy variable versions of 𝑢𝑢 and 𝑡𝑡. Evaluating the integrals yields   
 
 [ln 𝑢𝑢′]

𝑢𝑢
𝑢𝑢0 = [−2𝑘𝑘𝑡𝑡′]𝑡𝑡0 (3.23) 

Substituting in the limits, 
 ln 𝑢𝑢 − ln 𝑢𝑢0 = −2𝑘𝑘𝑡𝑡 − (−2𝑘𝑘 ∙ 0) (3.24) 
 
and the dummy variables disappear. Using the property of logs that ln 𝑢𝑢 − ln 𝑢𝑢0 = ln 𝑢𝑢

𝑢𝑢0
, we get 

 

 ln
𝑢𝑢
𝑢𝑢0

= − 2𝑘𝑘𝑡𝑡 (3.25) 

Taking 𝑆𝑆𝑥𝑥of both sides gives 

 
𝑢𝑢
𝑢𝑢0

= 𝑆𝑆−2𝑘𝑘𝑘𝑘 (3.26) 

Rearranging gives  
 𝑢𝑢 = 𝑢𝑢0𝑆𝑆−2𝑘𝑘𝑘𝑘 (3.17) 
 
which is the equation we were trying to derive… and we’re done! Phew… that took a while, but 
we successfully derived an analytical solution (an algebraic equation) for the ensemble average 
value of 𝑢𝑢 as a function of time for the two-box system. This analytical solution is a 
predetermined function of time.  
 

About what you discovered: connection with Calculus I 
Equation (3.19) is exactly the same as the derivative you learned about in Calculus I. However, 
students sometimes have trouble seeing that because the notation in their calculus textbook is 
different. In calculus textbooks the derivative of a function 𝑓𝑓(𝑥𝑥) is often written as 
  

 𝑓𝑓′(𝑥𝑥) = lim
ℎ→0

𝑓𝑓(𝑥𝑥 + ℎ) − 𝑓𝑓(𝑥𝑥)
ℎ

 (3.27) 

 
This equation really doesn’t look much like equation (3.19), so let’s go over how they match up. 
 
ℎ is a small step in 𝑥𝑥, so we would change ℎ ⟼ δ𝑥𝑥 
 

 𝑓𝑓′(𝑥𝑥) = lim
δ𝑥𝑥→0

𝑓𝑓(𝑥𝑥 + δ𝑥𝑥) − 𝑓𝑓(𝑥𝑥)
δ𝑥𝑥

 (3.28) 

 
Changing to Leibniz notation: 𝑓𝑓′(𝑥𝑥) ⟼ d𝑦𝑦

d𝑥𝑥
; 𝑓𝑓(𝑥𝑥) ⟼ 𝑦𝑦(𝑥𝑥); and 𝑓𝑓(𝑥𝑥 + δ𝑥𝑥) ⟼ 𝑦𝑦(𝑥𝑥 + δ𝑥𝑥) 

 

 d𝑦𝑦
d𝑥𝑥

= lim
δ𝑥𝑥→0

𝑦𝑦(𝑥𝑥 + δ𝑥𝑥) − 𝑦𝑦(𝑥𝑥)
δ𝑥𝑥

 (3.29) 
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Finally, 𝑦𝑦(𝑥𝑥 + δ𝑥𝑥) − 𝑦𝑦(𝑥𝑥) is a small change in 𝑦𝑦 corresponding to a small change in 𝑥𝑥. Hence, 
𝑦𝑦(𝑥𝑥 + δ𝑥𝑥) − 𝑦𝑦(𝑥𝑥) = δ𝑦𝑦, and equation (3.29) becomes 
 

 d𝑦𝑦
d𝑥𝑥

= lim
δ𝑥𝑥→0

δ𝑦𝑦 
δ𝑥𝑥

 (3.30) 

 
which is exactly the same form as equation (3.19). As you know from Calculus I, the derivative 
d𝑦𝑦
d𝑥𝑥

 is the slope of a graph of 𝑦𝑦 versus 𝑥𝑥. As we’ll see below, if we make δ𝑡𝑡 small enough in our 
FD method, we’ll approach the calculus answer as δ𝑡𝑡 → 0. Hence, the FD method should give the 
same answer as the analytical solution (3.17) that we derived using the derivative in equation 
(3.19). 
  
Note: We are using δ𝑦𝑦 for a change in 𝑦𝑦 that must be small and we’re reserving Δ𝑦𝑦 for a big 
change or difference. However, you should note that most math and physics textbooks use 
uppercase Δ𝑥𝑥 and Δ𝑦𝑦 in equations (3.28), (3.29) and (3.30) because they don’t make that 
distinction.  
 

About what you discovered: three “d”s 
We now have three “d”s for a change or difference in 𝑦𝑦 (or 𝑥𝑥 or 𝑡𝑡 etc.). Δ𝑦𝑦 is a change or difference 
in 𝑦𝑦 that does not need to be small, e.g. the difference in height between sea level and the top of 
Mt. Everest. δ𝑦𝑦 is a change or difference in 𝑦𝑦 that must be small, e.g. the height increase for your 
first step up the mountain (think a small piece of Δ𝑦𝑦). d𝑦𝑦 is the infinitesimal piece of 𝑦𝑦 that we 
get if we take the limit δ𝑦𝑦 → 0. It is useful to think of each of them as a step in 𝑦𝑦. Δ𝑦𝑦 is a big step, 
δ𝑦𝑦 is a small step, and d𝑦𝑦 is an infinitesimal increment.  

3.4 Comparison of FD method with theory 
Now that we have an analytical solution for the marble game, let’s use it to investigate the 
accuracy of the FD solution for 𝑢𝑢. 
 

 Q.3.17  (a) Using equation (3.16) write out a complete FD algorithm, including unit 
check(s), to calculate how the order parameter 𝑢𝑢 changes (on average) with time 𝑡𝑡 in our 
two-box model with 𝑘𝑘 = 0.05 s−1, δ𝑡𝑡 = 5 s and 𝑢𝑢0 = 1.  
(b) By hand, calculate steps 0, 1, and 2 of your finite difference algorithm and write your 
answer in the form of an output table.   
Hint: Your new algorithm should not include any “𝑥𝑥”s or “𝑁𝑁”s – only “𝑢𝑢”s. 
Note: Equation (3.17) is a theory equation that we’ll use in Q.3.18, but it’s not needed for 
this question Q.3.17. If you get stuck, try reading the following AWYD. 
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About what you discovered: making a new 𝒖𝒖 
Your algorithm should include an instruction using the δ𝑢𝑢 calculated from equation (3.16) to 
calculate 𝑢𝑢new. This is the standard finite difference approach that results in the following 
algorithm instruction  
 𝑢𝑢new = 𝑢𝑢old + δ𝑢𝑢new (3.31) 
 
My students thought it was amusing when this was recited as “the new you is the old you plus the 
change in you” – self-improvement using the FD method!   
 
Implement your algorithm in the FD theory table of the preformatted spreadsheet 
BPM.Ch03_Order_param.xlsx (that doesn’t include any mention of “𝑥𝑥”s or “𝑁𝑁”s) and check that 
it generates exactly the same sequence that you calculated in Q.3.17(b). Then extend your 
numerical method to the desired number of steps to show 60 seconds in a graph of 𝑢𝑢 versus 𝑡𝑡 with 
a timestep of δ𝑡𝑡 = 0.03 s. Then complete the Theory table in your spreadsheet – one column for 
time with increments of 0.5 seconds and a second column with the theoretical prediction for 𝑢𝑢 
using equation (3.17). Hint: Equation (3.17) can be input into the spreadsheet using an algorithm 
instruction 𝑢𝑢new = 𝑢𝑢0 ∗ EXP(−2 ∗ 𝑘𝑘 ∗ 𝑡𝑡new) where EXP( ) is Excel’s exponential function 𝑆𝑆𝑥𝑥 =
exp (𝑥𝑥) and where 𝑡𝑡new is the time in that row of the Theory table. The FD method and the theory 
values for 𝑢𝑢 should be plotted as lines only (with no markers) the Dash type of the Line of the 
theory curve should be changed to Round Dot – so that you can see both series better (see also 
Figure 3.3). 

About what you discovered: entropy and disorder 
As you discovered, the order parameter 𝑢𝑢 approaches its lowest possible value (𝑢𝑢 = 0) as the 
marble game approaches equilibrium. This tendency towards disorder in the marble game is an 
example of a much more general scientific observation – the second law of thermodynamics, 
which states that an isolated system, such as our two-box marble game, will always move (on 
average) towards maximum entropy. In our marble game entropy is simply related to the 
(dis)order of the system as measured by the order parameter 𝑢𝑢. If you understand why the order 
parameter tends towards 𝑢𝑢 = 0, then you also understand the prediction of the second law of 
thermodynamics as it applies to the marble game.  

Accuracy and stability of the FD method 
 

 Q.3.18  DISCUSSION QUESTION  Set the Maximum of the time axis to a Fixed value of 60 s, 
then sample different values of δ𝑡𝑡 to discover how changing δ𝑡𝑡 affects the FD method 
compared with theory. Starting with a really small value of δ𝑡𝑡 = 0.03 s, and gradually 
increasing δ𝑡𝑡, find  
(a) the largest value of δ𝑡𝑡 that keeps the FD method looking the same as theory (i.e. you 
can’t see any difference)  
(b) the smallest value of δ𝑡𝑡 that makes the FD method look noticeably different from theory 
(i.e. you can tell it’s not exactly the same graph, but it looks almost identical) and  
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(c) the smallest value of δ𝑡𝑡 that makes the FD method have the wrong shape.  
(d) Explain what happens when δ𝑡𝑡 = 20 s?  
(e) Record the graph for your answer to part (b), but first insert a Text Box or use the legend 
to indicate the value of δ𝑡𝑡 that you chose for the graph.  
Hint: The following AWYD includes a graph in a format that your answer could take.  

About what you discovered: stability of numerical methods 
As shown in Figure 3.3, the FD curve with δ𝑡𝑡 = 5 s is clearly different from the theoretical 
prediction (and hence is inaccurate), but at least it has the same basic shape (BTW this is not the 
answer to Q.3.18(e)). The FD curve with δ𝑡𝑡 = 15 s produces behavior that is qualitatively 
different from theory (the shape of the curve is just wrong!). 
 

 
Figure 3.3 Excel 2016 chart of the order parameter for the two-box marble game. Comparing FD methods  
(with different timesteps δ𝑡𝑡) with the theoretical prediction of equation (3.17) for  𝑘𝑘 = 0.05 s−1 and 𝑢𝑢0 = 1.  

 
What you just discovered turns out to be generally true for all numerical methods. With small 
timesteps, the algorithm works just fine and produces the “correct” answer. As you increase the 
timestep of the algorithm, the algorithm slowly moves away from the correct solution. As you 
increase the timestep further, the algorithm gets less and less accurate until it finally approaches 
a point where the algorithm breaks down and fails to model the system properly at all! Whenever 
we use a finite difference method, we’ll need to make sure that the timestep is short enough that 
we’re getting numbers that reflect the model system to the accuracy that we’re interested in. 

Aside – Chaos Theory  
For δ𝑡𝑡 = 20 s our finite difference method is periodic and oscillates between 𝑢𝑢 = 1 and 𝑢𝑢 = −1. 
For δ𝑡𝑡 > 20, the algorithm breaks down completely and produces a solution that diverges (gets 
further and further way from 𝑢𝑢 = 0) for long times. Other algorithms can exhibit even more 
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complex behavior. A classic example is the logistic map which exhibits chaotic behavior. Using 
our terminology, the logistic map can be summarized as 
 

 δ𝑁𝑁 = �1 −
𝑁𝑁
𝐾𝐾
�𝑁𝑁𝑘𝑘δ𝑡𝑡 (3.32) 

 
and can be investigated in Excel using the techniques we’ve been developing. Here 𝑘𝑘 is the 
population growth rate constant and 𝐾𝐾 is the steady-state population. For reasons that are not 
immediately obvious, we can define 𝑥𝑥 = 𝑁𝑁𝑘𝑘δ𝑡𝑡/[𝐾𝐾(𝑘𝑘δ𝑡𝑡 + 1)] and 𝑟𝑟 = (𝑘𝑘δ𝑡𝑡 + 1)/4. Using these 
variables, the logistic map can be written in its traditional form as 
 
 𝑥𝑥new = 4𝑟𝑟𝑥𝑥old(1 − 𝑥𝑥old) (3.33) 
 
Unfortunately, discussion of this topic is beyond the scope of this book. BTW in the late 1940s, a 
famous computer science guy, John von Neumann, suggested using the logistic map as a random 
number generator that behaves like the Excel function RANDBETWEEN() that we’ve already used. 
If you’re interested, search on online for the “logistic map” or check out Gould et al. [2007] or go 
to http://www.bioquest.org/esteem/esteem_details.php?product_id=197# . We’ll talk more about 
John von Neumann and one of his famous quotes in CHAPTER 6 and CHAPTER 12.  
 
As discussed in the previous AWYD, the accuracy of the FD method depends on the value of δ𝑡𝑡 
chosen. We now want to investigate quantitatively (i.e. using numbers) how the value of δ𝑡𝑡 affects 
the accuracy of the FD method. To do that we’ll need to delete the two-column theory table that 
you added for Q.3.18 above. What we want to do now is calculate the theory value of 𝑢𝑢 (𝑢𝑢theory) 
that corresponds to each time considered in the FD method. Change the heading of your FD 
column to 𝑢𝑢FD then add two new columns to the FD table in your spreadsheet, one for 𝑢𝑢theory and 
one for ∆𝑢𝑢, which is the difference (observed (FD) minus expected (theory)) for the order 
parameter 𝑢𝑢 at the same time 𝑡𝑡 as the FD method. You should think of ∆𝑢𝑢 as the error in the FD 
method caused by δ𝑡𝑡 not being small enough. Hint: The theory value should be calculated using 
𝑢𝑢theorynew = 𝑢𝑢0 ∗ EXP(−2 ∗ 𝑘𝑘 ∗ 𝑡𝑡FDnew), where 𝑡𝑡FDnew is the time for the corresponding FD step, and 
the difference can be calculated using ∆𝑢𝑢new = 𝑢𝑢FDnew − 𝑢𝑢theorynew , where 𝑢𝑢FDnew is the order 
parameter for the corresponding FD step.  
 

 Q.3.19  Plot ∆𝑢𝑢 vs. time in a new graph (with a time axis maximum of 60 s). Sample 
different values of δ𝑡𝑡 e.g. 0.01, 0.1, 1, 5, 20 s. Record your graph for δ𝑡𝑡 = 2 s.  

About what you discovered: errors are transient 
Your graph should look something like Figure A3.2. However, Figure A3.2 is not your answer to 
Q.3.19, as the value of the FD timestep is δ𝑡𝑡 = 0.5 s.  
 

 Q.3.20  Using your spreadsheet from Q.3.19, estimate the maximum value of δ𝑡𝑡 that 
produces an FD solution for 𝑢𝑢 accurate to at least 
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(a) 1 decimal place (±0.1),  
(b) 2 decimal places (±0.01) and  
(c) 3 decimal places (±0.001).  
Hint: You can do that by simply looking at your ∆𝑢𝑢 vs. 𝑡𝑡 graph and adjusting the value of 
the FD timestep δ𝑡𝑡. E.g. in Figure A3.2, δ𝑡𝑡 = 0.5 s and the biggest magnitude error (∆𝑢𝑢 =
−0.0094) occurs at an elapsed time of about 𝑡𝑡 = 10 s. This means that the magnitude of 
the error |∆𝑢𝑢|, is always less than 0.01. However, when you change the timestep to δ𝑡𝑡 =
0.6 s the biggest magnitude error changes to ∆𝑢𝑢 = −0.0113 and |∆𝑢𝑢| is not always less 
than 0.01. Hence, your answer to Q.3.20(b) should be δ𝑡𝑡 = 0.5 s as that is the (maximum) 
value of δ𝑡𝑡 that produces an FD solution for 𝑢𝑢 accurate to at least 2 decimal places (you 
only need one significant figure in your answer).  
(d) Summarize the trend you observed.  
Hint: If δ𝑡𝑡 is decreased by a factor of ten, by what factor does the accuracy of the FD 
method increase? 

About what you discovered: accuracy of numerical methods 
As you just discovered, the accuracy of the finite difference method depends on the timestep δ𝑡𝑡. 
With a longer timestep, fewer steps are needed to get to the desired time, but the cost is reduced 
accuracy. If you want better accuracy, you need to decrease the timestep with the cost being that 
more FD steps are required to reach the time that you’re interested in. This means that every time 
you implemented and tested an FD method in a spreadsheet, you’ll then need to adjust the timestep 
and the number of steps to get the desired accuracy in a reasonable number of steps.  
  

 Q.3.21  CALCULUS QUESTION  Using the definition of the derivative in equation (3.19), briefly 
explain why you would expect the FD method to approach the analytical solution of 
equation (3.20) as the timestep gets smaller. 

About what you discovered: connecting numerical methods to calculus  
In your answer to Q.3.21 you should have explained the idea that if you make δ𝑡𝑡 small enough 
the FD method produces a numerical answer that approaches the limit that δ𝑡𝑡 → 0 in the FD 
equation (3.16). That’s the same limit that results in the derivative in equation (3.19). Hence, the 
analytical solution we obtained using calculus should be the same as making δ𝑡𝑡 sufficiently small 
in our FD method.  

3.5 Blood plasma oxygenation (Dion’s passage revisited) 
In the introduction to this book we talked about how O2 molecules get from the air into the blood 
stream and how the outward jump of an O2 molecule (like Dion) is actually 40 times more likely 
than the inward jump. This system can be represented by a two-box system as shown in Figure 
3.4. Box 1 contains blood plasma in a small blood vessel (capillary) in the lung and box 2 contains 
breath gases in one of the small air sacs (alveoli) of the lung (right next to the blood vessel). As 
we’ll see in a later chapter, the two rate constants are determined by the physical size of the boxes 
and other factors. For boxes the size (diameter) of a typical capillary, the rate constants are about 
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𝑘𝑘𝑑𝑑 = 0.88 ms−1 for dissociation of O2 from the plasma into the gas and about 𝑘𝑘𝑎𝑎 = 0.022 ms−1 
for association of O2 with the plasma from the gas. Note: As discussed in the introduction, the 
outward jump rate constant 𝑘𝑘𝑑𝑑 is 40 times bigger than the inward jump rate constant 𝑘𝑘𝑎𝑎 (i.e. 𝑘𝑘𝑑𝑑 =
40𝑘𝑘𝑎𝑎). In the following we’re going to use the following subscripts. 
  

𝑝𝑝 = plasma (in capillary – a small blood vessel in the lung) 
𝑔𝑔 = gas (in alveolus – a small air sac in the lung) 
𝑑𝑑 = dissociation (jump from plasma to gas) 
𝑎𝑎 = association (jump from gas to plasma) 

 
The idea is that when you see 𝑁𝑁𝑝𝑝 you will know to pronounce it “number of O2 molecules in the 
plasma.” 

 
Figure 3.4 Marble game representation of a two-box system for blood plasma oxygenation. O2 associates 
with the plasma with rate constant 𝑘𝑘𝑎𝑎 and dissociates with rate constant 𝑘𝑘𝑑𝑑. 

 
During the plasma’s time in the capillary, O2 molecules can jump from the gas to the plasma and 
become dissolved in the plasma and vice versa, just like in our marble game – but with an 
important difference – the jump rate constants in each direction now differ by a factor of 40 
because the boxes are different. The plasma in box 1 is a salty solution similar to diluted seawater 
and box 2 contains breath gases – an ideal gas mixture. O2 is not very soluble in aqueous solution, 
which is why the rate constants are so different. For the moment, we’re going to completely ignore 
other important blood components such as red blood cells and just consider the O2 dissolved in 
pure plasma. From a physiological point of view, it’s important that we understand this first – 
before the effects of hemoglobin and myoglobin are considered (CHAPTER 6).  
 

 Q.3.22  (a) Draw an FD diagram for the two box system shown in Figure 3.4. (Don’t forget 
to include the rates in your diagram, e.g. see Figure 3.2.)  
(b) By carefully considering your FD diagram, show that the finite difference equation for 
the change in the number of O2 molecules in the plasma box (that occurs during a short 
time δ𝑡𝑡) is given by: 

 δ𝑁𝑁𝑝𝑝 = �𝑘𝑘𝑎𝑎𝑁𝑁𝑔𝑔 − 𝑘𝑘𝑑𝑑𝑁𝑁𝑝𝑝�δ𝑡𝑡 (3.34) 
 
 Q.3.23  At equilibrium the number of O2 molecules in the plasma does not change. This 
means that δ𝑁𝑁𝑝𝑝 = 0 in equation (3.34).  
(a) In equation (3.34), replace δ𝑁𝑁𝑝𝑝 with 0 and then solve the resulting equation for the 
equilibrium number in the plasma box.  

    

gas  plasma  

𝑁𝑁𝑝𝑝 𝑁𝑁𝑔𝑔 

  

𝑘𝑘𝑑𝑑 

𝑘𝑘𝑎𝑎 
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Hint: Your answer should be an equation including 𝑁𝑁𝑔𝑔.  
(b) Using this equation calculate how many molecules are located (on average) in the 
plasma box – at equilibrium – if there are a fixed (average) number of 𝑁𝑁𝑔𝑔 = 40 molecules 
in the gas box with 𝑘𝑘𝑎𝑎 = 0.022 ms−1 and 𝑘𝑘𝑑𝑑 = 0.88 ms−1.  
Hint: Your answer should be an actual number.  
(c) Using the same equation, calculate the equilibrium number in the plasma box if there 
are 𝑁𝑁𝑔𝑔 = 100 molecules in the gas box. 

 
Your answer to the previous question should have included the following equation 
 

 𝑁𝑁𝑝𝑝 =
𝑘𝑘𝑎𝑎
𝑘𝑘𝑑𝑑
𝑁𝑁𝑔𝑔 = 𝐾𝐾𝑎𝑎𝑁𝑁𝑔𝑔    (𝑜𝑜𝑜𝑜𝑜𝑜𝑦𝑦 at equilibrium) (3.35) 

 
where we have also defined the equilibrium association constant as  
 

 𝐾𝐾𝑎𝑎 ≜
𝑘𝑘𝑎𝑎
𝑘𝑘𝑑𝑑

    (even when 𝑜𝑜𝑜𝑜𝑡𝑡 at equilibrium) (3.36) 

 
The value of this equilibrium constant is determined solely by the values of the rate constants 
𝑘𝑘𝑎𝑎 = 0.022 ms−1 and 𝑘𝑘𝑑𝑑 = 0.88 ms−1 so that 𝐾𝐾𝑎𝑎 ≜ 𝑘𝑘𝑎𝑎/𝑘𝑘𝑑𝑑 = 1/40 = 0.025 at any time 
including during transient conditions. Equation (3.35) can be rearranged to show that it predicts 
the ratio of the number of molecules in the two boxes at equilibrium 
 

 
𝑁𝑁𝑝𝑝
𝑁𝑁𝑔𝑔

= 𝐾𝐾𝑎𝑎    (𝑜𝑜𝑜𝑜𝑜𝑜𝑦𝑦 at equilibrium) (3.37) 

About what you discovered: 𝒌𝒌𝒂𝒂, 𝑲𝑲𝒂𝒂, 𝐊𝐊! 
Just like in general chemistry, you have to be very careful about the case of 𝑘𝑘 in variables. In this 
book lower-case 𝑘𝑘 is used for rate constants e.g. 𝑘𝑘𝑎𝑎 (the association rate constant). Big 𝐾𝐾 is used 
for equilibrium constants e.g. 𝐾𝐾𝑎𝑎 (the association equilibrium constant) and big K (no italics) is 
the unit of temperature (kelvins). If you didn’t notice the difference in the preceding paragraph in 
the main text – go back and re-read it – it should now make much more sense. Forget about “p”s 
and “q”s… …mind your K’s! Hint: To make the distinction clear, you might like to write your 
handwritten lowercase “𝑘𝑘”s with a loop like this one – k.  

 
 Q.3.24  If blood plasma reaching the lung has 𝑁𝑁𝑝𝑝 = 1 O2 molecule (on average) and the 
gas has 𝑁𝑁𝑔𝑔 = 100 molecules (on average), briefly explain (in words) how 𝑁𝑁𝑝𝑝 will change 
(on average) as the system approaches equilibrium.  
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About what you discovered: boundary conditions 
The hypothetical situation posed in Q.3.24 with 𝑁𝑁𝑔𝑔 fixed at 𝑁𝑁𝑔𝑔 = 100 is an example of where the 
property of the system is specified at an edge or boundary of the system. In Q.3.24 the stated 
boundary condition is that the number of O2 molecules is held (approximately) constant at 𝑁𝑁𝑔𝑔 =
100 molecules in box 𝑔𝑔 as a result of normal respiration (the breathing process). This type of 
boundary condition is common when considering a normal steady state in physiology – where 
the body keeps the amount approximately constant. The numerical example has the average 
number of O2 molecules increasing from 𝑁𝑁𝑝𝑝 = 1 → 2.5 as the system approaches equilibrium, 
which is a 150% increase (a 2.5 ×) increase in the amount of O2 dissolved in the plasma. As we’ll 
discover in the next section, these numbers correspond to the normal (resting) physiological 
situation where the O2 content of the plasma does indeed increase by this amount as it passes by 
an alveolus. However, you should keep in mind that this type of boundary condition may not be 
appropriate for more extreme situations (such as holding your breath while swimming under 
water).  
 

 
 Q.3.25  DISCUSSION QUESTION  Consider the ratio 𝑁𝑁𝑔𝑔/𝑁𝑁𝑝𝑝. If this ratio is 40, the system starts 
at equilibrium and there is no net transfer (on average).  
(a) What happens (on average) if 𝑁𝑁𝑔𝑔/𝑁𝑁𝑝𝑝 > 40?  
(b) What happens (on average) if 𝑁𝑁𝑔𝑔/𝑁𝑁𝑝𝑝 < 40? (This could happen if the air you were 
breathing contained little or no oxygen – e.g. in a house fire.) 
(c) In light of your answers in (a) and (b), briefly explain what is required for O2 to move 
from the gas into the plasma (on average) even though an individual O2 molecule is 40 
times more likely to jump from the plasma back into the gas.  
Note: This is the answer to the conundrum posed in CHAPTER 1 concerning Dion’s 
passage. 

 
So far, we’ve been talking about the number of O2 molecules in two small boxes (that must be of 
the same physical size). However, this is not how scientists or medical practitioners talk about the 
amount of O2; they don’t count the number of molecules directly (it’s usually a number that’s way 
too big to count!). Chemists typically use O2 concentration measured in mol/L and medical 
practitioners use O2 partial pressure (or tension) measured in mmHg (Torr) in the USA (or kPa 
(SI units) in the rest of the (metric) world). We’ll start by talking about how concentration can be 
used instead of number of molecules. In SECTION 3.6 we’ll see how (and why) a partial pressure 
is usually used for the same information by the medical profession.  
 
When blood plasma enters the pulmonary (lung) capillary it is deoxygenated with a low 
concentration of dissolved O2 of about 𝑐𝑐𝑝𝑝 = 5.2 × 10−5 mol/L. The O2 concentration of the gas 
in the alveolus is about 100 times higher at 𝑐𝑐𝑔𝑔 = 5.2 × 10−3 mol/L. This system is shown in 
Figure 3.5 where we’ve specified the number of O2 molecules in each box using concentration in 
moles per liter mol/L. As indicated in Figure 3.5, the concentration in each box is just the number 
in moles divided by the volume of the box in liters. To get the actual number of molecules from 
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this you need to multiply the number in moles by Avogadro’s constant 𝑁𝑁A = 6.022 ×
1023 mol−1, i.e. 𝑁𝑁𝑝𝑝 = 𝑁𝑁A𝑜𝑜𝑝𝑝, where we’ve used the usual chemistry convention that upper case 𝑁𝑁 
stands for the number of molecules and lowercase 𝑜𝑜 stands for the number of moles.  
 

 
Figure 3.5 Marble game representation of a two-box system for blood plasma oxygenation. Amount of O2 is 
now represented by concentrations 𝑐𝑐𝑝𝑝 and 𝑐𝑐𝑔𝑔 [=] mol/L. 

Finite difference model of oxygen uptake 
 

 
Figure 3.6 FD diagram for blood plasma oxygenation. 

 
Using the notation discussed above, the FD diagram for this system is shown in Figure 3.6. The 
rate at which O2 molecules leave the plasma box is 𝑘𝑘𝑑𝑑𝑐𝑐𝑝𝑝 (in moles per liter per second) and the 
rate at which O2 molecules enter the plasma from the gas is 𝑘𝑘𝑎𝑎𝑐𝑐𝑔𝑔. By carefully considering Figure 
3.6, we can write out the following equation for the change in the concentration in box 1 δ𝑐𝑐𝑝𝑝 
during a short time δ𝑡𝑡  
 δ𝑐𝑐𝑝𝑝 = −𝑘𝑘𝑑𝑑𝑐𝑐𝑝𝑝δ𝑡𝑡 + 𝑘𝑘𝑎𝑎𝑐𝑐𝑔𝑔δ𝑡𝑡 (3.38) 

 
Note: The negative for the arrow leaving box 𝑝𝑝 and the positive sign for the entering arrow. This 
equation simplifies to 
 δ𝑐𝑐𝑝𝑝 = �𝑘𝑘𝑎𝑎𝑐𝑐𝑔𝑔 − 𝑘𝑘𝑑𝑑𝑐𝑐𝑝𝑝�δ𝑡𝑡 (3.39) 

 
… just like the original two-box model, except that jumps from box 𝑝𝑝 → 𝑔𝑔 occur with rate 
constant 𝑘𝑘𝑑𝑑 and jumps from box 𝑔𝑔 → 𝑝𝑝 occur with rate constant 𝑘𝑘𝑎𝑎, and we have used the 
concentrations 𝑐𝑐𝑝𝑝 and 𝑐𝑐𝑔𝑔 instead of the numbers 𝑁𝑁𝑝𝑝 and 𝑁𝑁𝑔𝑔. 
 
We now want to check that equation (3.39) is the same as equation (3.34) – your answer to 
Q.3.22(b) (that used “𝑁𝑁”s instead of “𝑐𝑐”s).  
 

    

gas  plasma  

𝑐𝑐𝑝𝑝 𝑐𝑐𝑔𝑔 

  

𝑘𝑘𝑑𝑑 

𝑘𝑘𝑎𝑎 
𝑐𝑐𝑝𝑝 = 𝑜𝑜𝑝𝑝/𝑉𝑉 

𝑐𝑐𝑔𝑔 = 𝑜𝑜𝑔𝑔/𝑉𝑉 

 
𝑘𝑘𝑑𝑑𝑐𝑐𝑝𝑝 

𝒑𝒑 
𝑘𝑘𝑎𝑎𝑐𝑐𝑔𝑔 

𝒈𝒈 

plasma  gas  
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 Q.3.26  (a) Using the definition of concentration (3.57) (𝑐𝑐𝑝𝑝 ≜ 𝑜𝑜𝑝𝑝/𝑉𝑉), show that 𝑐𝑐𝑝𝑝 =
𝑁𝑁𝑝𝑝/(𝑁𝑁A𝑉𝑉) and 𝑐𝑐𝑔𝑔 = 𝑁𝑁𝑔𝑔/(𝑁𝑁A𝑉𝑉).  
Hint: by definition 𝑜𝑜𝑝𝑝 ≜ 𝑁𝑁𝑝𝑝/𝑁𝑁A. 
(b) Using the definition of a finite change in 𝑥𝑥, δ𝑥𝑥 ≜ 𝑥𝑥new − 𝑥𝑥old (for any 𝑥𝑥. e.g. δ𝑐𝑐𝑝𝑝 ≜
𝑐𝑐𝑝𝑝new − 𝑐𝑐𝑝𝑝old), show that δ𝑐𝑐𝑝𝑝 = δ𝑁𝑁𝑝𝑝/(𝑁𝑁A𝑉𝑉) and δ𝑐𝑐𝑔𝑔 = δ𝑁𝑁𝑔𝑔/(𝑁𝑁A𝑉𝑉).  
(c) By plugging your answers to Q.3.26(a)&(b) into equation (3.39), i.e. by replacing the 
“𝑐𝑐”s in equation (3.39) with the equivalent “𝑁𝑁”s, show that equation (3.39) is equivalent 
to equation (3.34), which is what you derived using the “𝑁𝑁”s in Q.3.22(b). 
Hint: You answer should start with equation (3.39) and end with equation (3.34) (showing 
all your work). 

About what you discovered: using concentrations in the FD method 
What you just discovered means that it’s okay for us to use concentrations “𝑐𝑐”s instead of number 
of molecules “𝑁𝑁”s in FD methods from now on. BTW you should note that the rate constants (the 
“𝑘𝑘”s) have units of per second and hence don’t depend on what units we use for the amount of O2 
in each box. Note also that boxes 1 and 2 must have the same volume 𝑉𝑉 to make equation (3.39) 
equivalent to δ𝑁𝑁𝑝𝑝 = �𝑘𝑘𝑎𝑎𝑁𝑁𝑔𝑔 − 𝑘𝑘𝑑𝑑𝑁𝑁𝑝𝑝�δ𝑡𝑡.  
 

 Q.3.27  (a) Using the approach outlined in SECTION 3.1, carefully consider the FD diagram 
3.6, write out an equation for δ𝑐𝑐𝑔𝑔 and show that it can be rearranged as  
 

 δ𝑐𝑐𝑔𝑔 = �𝑘𝑘𝑑𝑑𝑐𝑐𝑝𝑝 − 𝑘𝑘𝑎𝑎𝑐𝑐𝑔𝑔�δ𝑡𝑡 (3.40) 
 

(b) Using equations (3.39) and (3.40) show that δ𝑐𝑐𝑔𝑔 = −δ𝑐𝑐𝑝𝑝 so that 𝑐𝑐𝑔𝑔new can be calculated 
using 

 𝑐𝑐𝑔𝑔new = 𝑐𝑐𝑔𝑔old − δ𝑐𝑐𝑝𝑝new (3.41) 
 

 Q.3.28  (a) Using equations (3.39) and (3.41) write out a complete FD algorithm, including 
unit check(s), to calculate how the plasma and gas concentrations change with time using: 
the initial concentrations 𝑐𝑐𝑝𝑝0 = 5.2 × 10−5 mol/L and 𝑐𝑐𝑔𝑔0 = 5.2 × 10−3 mol/L ; rate 
constants  𝑘𝑘𝑑𝑑 = 0.88 ms−1 and 𝑘𝑘𝑎𝑎 = 0.022 ms−1; and a timestep of δ𝑡𝑡 = 1 ms.  
Hint: Using equation (3.39) to calculate δ𝑐𝑐𝑝𝑝new we can then calculate 𝑐𝑐𝑝𝑝new using the usual 
FD update equation 𝑐𝑐𝑝𝑝new = 𝑐𝑐𝑝𝑝old + δ𝑐𝑐𝑝𝑝new and 𝑐𝑐𝑔𝑔new using equation (3.41). 
(b) By hand, calculate steps 0, 1, and 2 of your finite difference algorithm and write your 
answer in the form of an output table. 

 
 Q.3.29  Implement your algorithm in a blank spreadsheet and check that it generates 
exactly the same sequence that you calculated in Q.3.28(b). Then plot 𝑐𝑐𝑝𝑝 versus time (as 
usual for FD models, your plot should be a Scatter with Straight Lines chart). The graph 
you get won’t have the correct shape (it looks chunky – like connected straight lines) 
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because the timestep (δ𝑡𝑡 = 1 ms) is too big. Fix that by making δ𝑡𝑡 smaller until you’re 
sure that your graph is accurate. While you’re doing that, you should also extend your 
numerical method to the number of steps required to show the approach to equilibrium 
properly. From now on, it will be up to you to decide how long the sim needs to run to 
show what’s happening clearly. 

 
Now add a series for 𝑐𝑐𝑔𝑔 versus time. You should notice that the gas concentrations are 
much larger than the plasma concentration. This makes it difficult to see what’s happening 
with 𝑐𝑐𝑝𝑝. To fix that, we’ll plot the gas concentration on a secondary axis. Change the axis 
of the 𝑐𝑐𝑔𝑔 series by right clicking on the 𝑐𝑐𝑔𝑔 curve. Select Format Data Series… change Series 
Options to Secondary Axis. Change the scale of the secondary axis by right clicking on it, 
select Format Axis > Axis Options > Bounds and set Minimum to 0.0 (to show that the 
fractional change in 𝑐𝑐𝑔𝑔 is small). Add an Axis Title to the 𝑐𝑐𝑔𝑔-axis using Design >Add Chart 
Element > Axis titles > Secondary Vertical. And add a suitable Legend to your graph. Then 
change the maximum of the 𝑐𝑐𝑝𝑝-axis so that the two curves don’t appear to cross. Lastly, 
change the Dash type of the 𝑐𝑐𝑔𝑔 line (to identify it).  
 
Record your graph. 

About what you discovered: design your own graph 
Before you check your answer by looking at Figure A3.3 – you should review your graph to check 
that it shows your FD model properly. Your graph should include a smooth curve for 𝑐𝑐𝑝𝑝 like the 
one in Figure A3.3 – if it looks like connected straight lines then you should make δ𝑡𝑡 smaller – 
just like in Q.3.18. The graph you just plotted tells us a lot about oxygen uptake into blood plasma. 
If you’ve labeled them correctly, the axes and legend combined will tell anyone interested what 
the curves actually are. The axis scales (with units) are also essential.  
 
Lets’ go through the components of Figure A3.3 to make sure it is constructed properly. (You 
should do this for any graph that you design or read.) In Figure A3.3, time is in milliseconds (ms) 
and both concentrations are in millimolar (mM) but the 𝑐𝑐𝑝𝑝 and 𝑐𝑐𝑔𝑔 axes have different scales. I 
added arrows pointing from the curves toward the corresponding concentration axes. These arrows 
are intended as a visual reminder that there are two different 𝑦𝑦-axes. The arrows are not required, 
but they do help the reader to recognize which axis goes with which curve.  
 
Note: The scales of each of the two 𝑦𝑦-axes differ by a factor of about 40 which allows us to 
conclude that 𝑐𝑐𝑝𝑝 ≪ 𝑐𝑐𝑔𝑔 (plasma concentration is much less than gas concentration) throughout the 
whole graph. In this graph we also had to select a range (and units) for the time axis. When you’re 
doing this you should ask yourself the following two questions: 1) Does the shape of the graph 
make sense? 2) Does the concentration approach the correct equilibrium value? I chose a duration 
of 8 ms so that roughly the first half of the graph shows the shape of the approach to equilibrium 
and the second half shows that we really have reached equilibrium. Normally it will be up to you 
to determine the length of the simulation shown in the graph and the ranges of the axes.  
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 Q.3.30  DISCUSSION QUESTION   
(a) By inspecting the graph in Q.3.29, estimate how long it takes the plasma O2 
concentration to reach equilibrium in this model.  
(b) Briefly explain why 𝑐𝑐𝑔𝑔 appears constant in the graph.  
Hint: From the beginning to the end of the graph, the same number of O2 molecules leave 
box 𝑔𝑔 as enter box 𝑝𝑝.  

About what you discovered: change in CPR guidelines saves lives 
In 2005 the American Heart Association (AHA) announced updated cardiopulmonary 
resuscitation (CPR) guidelines. The most significant change was to the ratio of chest compressions 
to rescue breaths – from 15 compressions for every two rescue breaths (in the 2000 guidelines) to 
30 compressions for every two rescue breaths (in the 2005 guidelines). Even more recently (2010) 
the order of the three steps of (CPR) was rearranged. The old way was A-B-C – for airway, 
breathing and compressions. The new way is C-A-B – for compressions, airway, and breathing. 
 
The increased emphasis on compressions can be seen in your graph of blood plasma oxygenation. 
It only takes a few milliseconds for the blood in the lungs to become oxygenated. The key to 
saving lives is to get that O2 to vital organs (e.g. the brain). In the short term, keeping the blood 
flowing (through chest compressions) is more important than replacing the air in the lungs 
(through rescue breaths). The O2 level in the lungs goes down relatively slowly, but if the blood 
stops flowing, O2 stops being absorbed in the blood within milliseconds. Similarly, at the other 
end of the circulatory system (middle of the oxygen cascade), O2 delivery (to brain tissues) also 
slows down rapidly if the blood flow stops.  

 
 Q.3.31  CALCULUS QUESTION  (a) Convert FD equation (3.39) into a differential equation and 
derive an analytical expression for 𝑐𝑐𝑝𝑝(𝑡𝑡) assuming the boundary condition that 𝑐𝑐𝑔𝑔 is 
constant, e.g. 𝑐𝑐𝑔𝑔 = 5.2 × 10−3 mol/L at all times and 𝑐𝑐𝑝𝑝 = 𝑐𝑐𝑝𝑝0 = 5.2 × 10−5 mol/L only 
at 𝑡𝑡 = 0. 
(b) Add a series to your graph in Q.3.29 to show the analytical expression you derived in 
part (a).  
(c) Briefly explain why the curve you added in part (b) predicts a higher concentration than 
the FD model in Q.3.29. 
 
 Q.3.32  CHALLENGE CALCULUS QUESTION  (a) Derive an analytical expression for 𝑐𝑐𝑝𝑝(𝑡𝑡) 
assuming the boundary condition that 𝑐𝑐𝑝𝑝 + 𝑐𝑐𝑔𝑔 is constant and the initial values of 𝑐𝑐𝑝𝑝 and 
𝑐𝑐𝑔𝑔 are those given in Q.3.31.  
1st Hint: It is useful to define 𝑐𝑐𝑠𝑠 = 𝑐𝑐𝑝𝑝 + 𝑐𝑐𝑔𝑔, which is the constant (time independent) sum 
of the two concentrations and 𝑘𝑘𝑠𝑠 = 𝑘𝑘𝑎𝑎 + 𝑘𝑘𝑑𝑑 is the sum of the two rate constants.  
2nd Hint: You will also need to substitute 𝑐𝑐𝑔𝑔 = 𝑐𝑐𝑠𝑠 − 𝑐𝑐𝑝𝑝 into equation (3.39) to eliminate 𝑐𝑐𝑔𝑔 
from the resulting differential equation. 
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(b)  EXTRA BONUS POINTS  Derive an expression for the order parameter of this system. 
 
 Q.3.33  RESEARCH QUESTION  Find experimental data that correspond to Figure A3.3. 
 
 Q.3.34  DISCUSSION QUESTION  Using the FD diagram 3.6, briefly explain how and why 
Dion’s passage through the alveolar wall really is consistent with O2 uptake in humans 
(even though the reverse jump really is 40 times more likely). 

About what you discovered: Dion’s passage 
 

 
Figure 3.6 (repeated) FD diagram for blood plasma oxygenation. 

 
By inspecting Figure 3.6 we can see that to get a net transfer of oxygen from 𝑔𝑔 → 𝑝𝑝 the rate into 
box 𝑝𝑝 must be greater than the dissociation rate, hence  
 
 𝑘𝑘𝑎𝑎𝑐𝑐𝑔𝑔 > 𝑘𝑘𝑑𝑑𝑐𝑐𝑝𝑝 (3.42) 
so 

 𝑐𝑐𝑔𝑔 >
𝑘𝑘𝑑𝑑
𝑘𝑘𝑎𝑎
𝑐𝑐𝑝𝑝 (3.43) 

or 
 𝑐𝑐𝑔𝑔 > 40𝑐𝑐𝑝𝑝 (3.44) 
 
Hence our FD formulation provides a simple explanation: the requirement for oxygen uptake is 
that the gas concentration must be more than 40 times the plasma concentration. BTW it’s 
normally about 100𝑐𝑐𝑝𝑝 for plasma entering the lungs.  

3.6 Equilibrium and physiological units for cp  
As we’ve seen, the plasma O2 concentration rapidly reaches an equilibrium value determined by 
the O2 concentration in the gas. This is also true in normal human physiology and the O2 
concentration in blood plasma exiting the capillary is normally in equilibrium with the alveolar 
gas.  
 

 Q.3.35  Show that the equilibrium value of the plasma O2 concentration is given by 
 

 𝑐𝑐𝑝𝑝 =
𝑘𝑘𝑎𝑎
𝑘𝑘𝑑𝑑
𝑐𝑐𝑔𝑔 = 𝐾𝐾𝑎𝑎𝑐𝑐𝑔𝑔 (3.45) 

 

 
𝑘𝑘𝑑𝑑𝑐𝑐𝑝𝑝 

𝒑𝒑 
𝑘𝑘𝑎𝑎𝑐𝑐𝑔𝑔 

𝒈𝒈 

plasma  gas  
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Hint: As usual, the ensemble average system properties don’t change at equilibrium, and 
hence δ𝑐𝑐𝑝𝑝 = 0 in equation (3.39). In equation (3.45) the equilibrium association constant 
𝐾𝐾𝑎𝑎 is the same constant defined in equation (3.36).  

 
By rearranging equation (3.45) it is easy to see that the equilibrium association constant also 
predicts the ratio of the concentrations in the two boxes at equilibrium 
 

 
𝑐𝑐𝑝𝑝
𝑐𝑐𝑔𝑔

= 𝐾𝐾𝑎𝑎    (at equilibrium) (3.46) 

 
Equation (3.45) implies that once we know the concentration of O2 in the gas, we can predict the 
O2 plasma concentration of blood leaving the lungs (it will be forty times less than the 
concentration in the gas). In physiology, the gas concentration is not usually given in mol/L, but 
it is represented by mmHg (or kPa). Let’s see where these units come from… The O2 in the 
alveolar gas is basically an ideal gas. Hence, the ideal gas law for O2 in box 𝑔𝑔 is 
 
 𝑃𝑃𝑔𝑔𝑉𝑉 = 𝑜𝑜𝑔𝑔𝑅𝑅𝑅𝑅 (3.47) 

 
where 𝑃𝑃𝑔𝑔 is the partial pressure of O2 gas in box 𝑔𝑔, 𝑉𝑉 is the volume of box 𝑔𝑔 (in m3), 𝑜𝑜𝑔𝑔 is the 
number of moles of O2 in box 𝑔𝑔 (in moles), 𝑅𝑅 = 8.314 J ∙ K−1 ∙ mol−1 is the molar gas constant 
and 𝑅𝑅 = 310 K is the (absolute) temperature of box 𝑔𝑔 (normal body temperature). We can use 
equation (3.47) and the definition of concentration (3.57) to give 𝑐𝑐𝑔𝑔 = 𝑜𝑜𝑔𝑔/𝑉𝑉 = 𝑃𝑃𝑔𝑔/(𝑅𝑅𝑅𝑅). 
Combining this with equation (3.45) gives 

 𝑐𝑐𝑝𝑝 =
𝐾𝐾𝑎𝑎
𝑅𝑅𝑅𝑅

𝑃𝑃𝑔𝑔 = 𝜎𝜎𝑃𝑃𝑔𝑔 (3.48) 

 
where 𝜎𝜎 = 𝐾𝐾𝑎𝑎/(𝑅𝑅𝑅𝑅) = 9.6 × 10−6 mol ∙ m−3 ∙ Pa−1 = 1.3 × 10−6 mol ∙ L−1 ∙ mmHg−1 is the 
solubility of O2 (per mmHg) in blood plasma. If we know the oxygen partial pressure 𝑃𝑃𝑔𝑔 then 
equation (3.48) tells us the plasma O2 concentration in equilibrium with it. This is worth repeating: 
equation (3.48) is only true when the plasma is in equilibrium with gaseous O2 at partial pressure 
𝑃𝑃𝑔𝑔.   
 
In physiology textbooks, equation (3.48) is used in non-equilibrium situations to relate a plasma 
O2 concentration to a (thermodynamically equivalent) “oxygen partial pressure” or “oxygen 
tension” 𝑃𝑃O2 

 𝑃𝑃O2 =
𝑐𝑐𝑝𝑝
𝜎𝜎

 (3.49) 
 
The 𝑃𝑃O2 in equation (3.49) tells you the same information as 𝑐𝑐𝑝𝑝 (the O2 concentration in the 
plasma), even when there is no gaseous O2 actually in equilibrium with it. 
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 Q.3.36  (a) Use equation (3.49) to calculate the 𝑃𝑃O2 of plasma entering the lung (at the 
beginning of your spreadsheet in Q.3.29). Give your answer in both mmHg and kPa.  
(b) Use equation (3.49) to calculate the 𝑃𝑃O2 of plasma leaving the lung (at the end of your 
spreadsheet in Q.3.29 when it reaches equilibrium). Give your answer in both mmHg and 
kPa.  
(c) As a check on your calculation, convert your answers to parts (a) and (b) back into the 
usual concentration units (mol/L).  
Hint: You should write out your answer in the same format as the following AWYD. You 
should include the units in your written calculations and then make sure that they cancel 
out correctly. If they don’t – then all hope of getting the correct answer … is lost! BTW 
your answer to part (c) should be the same as the number you started with. This is a check 
that you did both of the conversions correctly. 

About what you discovered: units, Units, UNITS! 
A couple of features we’ve discovered in our model are key observations made in physiology 
textbooks when they describe plasma oxygenation. The first is that the alveolar O2 concentration 
𝑐𝑐𝑔𝑔 remains essentially constant under normal conditions. This can be included as a boundary 
condition in our analysis. The second is that the timescale for O2 uptake is sufficiently rapid that 
the plasma reaches equilibrium with the gas before the blood leaves the capillary even if we do 
account for the presence of red blood cells and hemoglobin. 

units, Units, UNITS! 
In the real estate business, they say that the three most important things are location, location, 
location! When working in science, the three most important things are units, units, units! More 
students have gotten more headaches from mistakes with units than any other issue. The SI 
(metric) system that’s used in most general chemistry and physics textbooks is organized so that 
units usually just work out right… …meaning that you can just plug in the numbers then chug 
through the calculation and voila! the correct answer just pops right out. Unfortunately, this is not 
the case in BIOPHYSICS AND PHYSIOLOGICAL MODELING. The medical profession (particularly 
in the United States) is notorious for using non-SI units! This means that if we are going to analyze 
physiological quantities in the traditional units, then we’ll need to be good with unit conversions. 
As a concrete example, let’s consider the factor 𝜎𝜎 in equations (3.48) and (3.49). When you 
calculate it, you should write out the following 
 

 𝜎𝜎 =
𝐾𝐾𝑎𝑎
𝑅𝑅𝑅𝑅

=
(0.025)

�8.314 J
K ∙ mol� (310 K)

= 9.6 × 10−6  
mol

J
 (3.50) 

 
where we have replaced each letter with a corresponding number-with-units in parentheses. Note 
that we’ve written the units in “over-under format” to help us see that the units K cancel out, but 
there’s a problem. The units mol ∙ J−1 don’t match what we want to use in equation (3.48). A 
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chemist would want 𝜎𝜎 in the units of mol ∙ L−1 ∙ Pa−1 and an American physiologist would want 
𝜎𝜎 in units of mol ∙ L−1 ∙ mmHg−1. The unit conversions should be written out as 
 

 𝜎𝜎 = �9.6 × 10−6  
mol

J
� �

1 J
1 N ∙ m

��
1 N

m2

1 Pa
� = 9.6 × 10−6

mol
m3 ∙ Pa

 (3.51) 

 
Each of the new factors in parentheses are simply one thing (1 J) over the same thing (1 N ∙ m) 
i.e. 1 = (1 J)/(1 N ∙ m). The last factor in parentheses is also one as 1 Pa ≜ 1 N/m2 by definition. 
This version of 𝜎𝜎 is in standard SI units. To convert to chemistry units, you should write out 
 

 𝜎𝜎 = �9.6 × 10−6  
mol

m3 ∙ Pa
� �

1 m3

1000 L
� = 9.6 × 10−9

mol
L ∙ Pa

 (3.52) 

 
as there are 1000 L in 1 m3. To convert to physiological units 
 

 𝜎𝜎 = �9.6 × 10−9  
mol

L ∙ Pa
� �

1.013 × 105 Pa
760.0 mmHg

� = 1.3 × 10−6
mol

L ∙ mmHg
 (3.53) 

 
as one atmosphere at STP is 1.013 × 105 Pa = 760.0 mmHg. 

Concentration measured as a pressure!?! 
When physiologists discuss the oxygen partial pressure (tension) 𝑃𝑃O2 in plasma they are not 
using it as a unit of actual physical (hydrostatic) pressure (like in a car tire). As we’ve seen, it’s 
really being used as a unit of concentration. For example, the blood flowing into the lung has a 
𝑃𝑃O2 of about 40 mmHg and the blood leaving the lung has a 𝑃𝑃O2 of about 100 mmHg. This means 
that the oxygen concentration in the blood plasma is higher leaving the lung. It does not mean that 
the hydrostatic pressure is higher! In fact, the (hydrostatic) blood pressure is higher entering the 
lung… So, don’t be fooled, the driving force for O2 diffusion in blood and tissue is not a pressure 
difference (like when you inflate a balloon or tire), but rather a difference in concentration 
(number of molecules per unit volume) just like in the marble game.  
 

 Q.3.37  DISCUSSION QUESTION  (a) Briefly translate Barb’s description of oxygen uptake in 
the lungs (see chapter introduction) into the language we used in the marble game. In 
particular, you should translate the description using oxygen tensions (40 mmHg and 
100 mmHg) into concentrations.  
(b) In light of your answer to part (a), briefly explain why physiologists prefer to use 
oxygen tension. 
(c) Barb’s description of oxygen uptake does not mention randomness. Explain what is 
missing from her description and how it could be improved so that it does not mislead 
people into thinking that “diffusion” is a simple non-random directed process. 
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About what you discovered: Barb’s explanation of plasma oxygenation 
Barb’s (medical physiology textbook) explanation of plasma oxygenation describes O2 diffusing 
from high to low oxygen tension 𝑃𝑃O2 (in units of mmHg – corresponding to O2 partial pressure). 
This oxygen tension (or O2 partial pressure) is used as a measure (indication of the value) of 
the amount of oxygen. Oxygen partial pressures are directly comparable between different oxygen 
environments because they refer to an ideal gas reference states that would be in equilibrium with 
them. The advantage of this measure is that the O2 tensions in the gas and plasma will be the same 
at equilibrium. This makes direct numerical comparisons (like Barb’s) correctly predict the 
direction of diffusion between different oxygen environments without having to talk about O2 
solubility or the fact that 𝑘𝑘𝑑𝑑 = 40𝑘𝑘𝑎𝑎.  
 

 Q.3.38  DISCUSSION QUESTION  Briefly explain how the solubility (per mmHg) 𝜎𝜎 is related 
to the Henry’s law constant 𝐾𝐾H = 𝑃𝑃O2/𝑐𝑐𝑝𝑝. 
Hint: Review what you learned about Henry’s law from general chemistry. A 
mathematical relationship (between 𝜎𝜎 and 𝐾𝐾H) is the best way to summarize your answer. 

 
Your friend Barb tells you that most American physiology textbooks state that at a normal arterial 
𝑃𝑃O2 of 100 mmHg there is 3 mL of O2 at standard temperature and pressure (STP) dissolved per 
liter of blood plasma at equilibrium. This 3 mL of O2 (at STP) has units of a (gas) volume, but it 
is really telling you the amount of O2 (think moles). 
 

 Q.3.39  (a) Calculate 𝑜𝑜 the number of moles of O2 in a volume 𝑉𝑉 = 3.00 mL of (at STP).  
Hint: To find 𝑜𝑜 you can use the ideal gas equation (𝑃𝑃𝑉𝑉 = 𝑜𝑜𝑅𝑅𝑅𝑅) and solve for 𝑜𝑜. In this 
equation you should use the standard values for temperature and pressure. I.e. 𝑅𝑅 =
 273.15 K  (0℃) and 𝑃𝑃 = 1.013 × 105 Pa (1 atm) and 𝑅𝑅 = 0.082057 L ∙ atm ∙ K−1 ∙
mol−1.  
(b) Using this mole-amount 𝑜𝑜 of O2 per 100 mmHg per liter of whole blood, equation 
(3.49) and the definition of concentration (3.57) (𝑐𝑐 = 𝑜𝑜/𝑉𝑉), calculate the corresponding 
solubility 𝜎𝜎 [=] mol ∙ L−1 ∙ mmHg−1.  
(c) Compare your answer in part (b) with the value of 𝜎𝜎 = 1.3 × 10−6 mol ∙ L−1 ∙ mmHg−1 
given in this chapter.  
Hint: (They should be close to each other). A good answer will discuss whether the 
difference is significant and give a percent comparison (percent change or error, as 
discussed in the “talking numbers” AWYD in CHAPTER 2). 

Plasma is not enough 
A final word of warning… In this chapter, we’ve only considered O2 dissolved in blood plasma. 
If plasma was the only thing carrying oxygen around in your blood, the amount of O2 stored in all 
your blood plasma (about 5 L) would keep you alive for only four seconds! Luckily for us, human 
whole blood has red blood cells that include hemoglobin (Hb) molecules that bind O2 molecules. 
As a result, red blood cells carry much more O2 than the plasma in which they float. We’ll discuss 
this topic in more detail in CHAPTER 6, but for now answer the following: 
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 Q.3.40  DISCUSSION QUESTION  Your friend Barb tells you that her physiology textbook states 
that at a normal arterial 𝑃𝑃O2 of 100 mmHg there is about 200 mL of O2 dissolved per liter 
of whole blood (i.e. including red blood cells etc...).  
(a) Quantitatively compare this number with the amount dissolved just in plasma (3 mL 
per L).  
(b) What would be the percent error in the whole-blood O2 if the amount of O2 dissolved 
in the plasma was ignored (i.e. assumed to be zero?). 
(c) Is your answer in (b) a significant difference? 

 
 Q.3.41  DISCUSSION QUESTION  Like diffusion, there are many misconceptions surrounding 
oxygen uptake and what causes it to occur. How would you use what you’ve discovered 
from the marble game to explain what’s really going on to a student who had the following 
misconceptions? –   
(a) “The binding of oxygen to Hb pulls oxygen from the lungs into the blood.”  
1st Hint: Is there really a physical force pulling the molecules?  
2nd Hint: Once oxygen molecules are in the blood plasma, many of them are bound to Hb 
so that they can’t participate in the oxygen marble game. This situation is analogous to 
glycolysis in the cytosol removing glucose molecules from the glucose marble game, as 
discussed in Q.1.34. 
(b) “The higher oxygen tension in the lungs pushes oxygen into the blood.” 
Hint: Is there really a physical force pushing the molecules?  
(c) Briefly describe any other misconceptions about oxygen uptake that you’ve corrected 
or heard from others? 
 
 Q.3.42  RESEARCH QUESTION  (a) Using the estimate of 4 seconds in the discussion above 
calculate the basal amount of O2 used per second by a typical person.  
(b) Compare this number with literature values – don’t forget to cite references properly.   
 
 Q.3.43  RESEARCH QUESTION  Find experimental data for plasma O2 solubility. How does it 
depend on temperature?  
(a) What do the textbooks say?  
(b) What do reference books say? (e.g. the CRC HANDBOOK OF CHEMISTRY AND 
PHYSICS.) 
(c) Primary research literature?   
(d) Which sources are the most authoritative? 
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Conclusion – about what you discovered 
Congratulations! If you made it here, then you’ve successfully learned how to develop a 
predictive numerical model – just by analyzing a properly labeled FD diagram. This is an 
incredibly useful technique! If you can draw an FD diagram of the system, then you can develop 
a FD model and get Excel to crunch the numbers for you. The vast majority of molecular systems 
of physiological interest can be modeled in this general manner. In the marble game model of 
plasma oxygenation, the jumping process consists of one reversible step: a jump from box 𝑔𝑔 → 𝑝𝑝 
(gas → plasma), which occurs with rate 𝑘𝑘𝑎𝑎𝑐𝑐𝑔𝑔; and the reverse jump from box 𝑝𝑝 → 𝑔𝑔 (plasma → 
gas), which occurs with rate 𝑘𝑘𝑑𝑑𝑐𝑐𝑝𝑝. By drawing an FD diagram with these rates (Figure 3.6), we 
were able write an FD equation (3.39) for the small change in the concentration δ𝑐𝑐𝑝𝑝 during a short 
time δ𝑡𝑡, allowing us to predict the new value of 𝑐𝑐𝑝𝑝 from the old 
 
 𝑐𝑐𝑝𝑝new = 𝑐𝑐𝑝𝑝old + δ𝑐𝑐𝑝𝑝new (3.54) 

 
The main limitation of this approach is our knowledge of physiology. We have to know (or at 
least be able to guess) the steps and their rates. Once we’ve done that, we need to relate what 
we’ve done back to the physiological system. In some cases, we’ll have to change units or even 
the way we express the answers – just like we did with 𝑃𝑃O2. 
 
If you’re interested in a new system (and you’re not exactly sure how it works), then you can use 
this approach to test your guesses for how it might work. Personally, I think using numerical (or 
simulation) models for hypothesis testing is the most fun part of doing science! The challenge 
problem is this: – Can we figure out the simplest possible explanation for how something works? 
We can then test our hypothesis by comparing its consequences with experiment. Basically, that’s 
what quantitative scientific modeling is all about. 
 
In the optional calculus section, we derived an analytical expression for the order parameter 𝑢𝑢 
in the original two-box system. If you can derive an analytical expression for the solution to a 
problem, then it’s (often) the most useful form of the model. Analytical solutions completely (and 
very succinctly) describe the ensemble average behavior of the model. If possible, you should 
always try to find an analytical solution for the model system. Equation (3.17) tells us everything 
we could ever want to know about the ensemble average value of the order parameter 𝑢𝑢. Once 
we know 𝑢𝑢, we can calculate 𝑥𝑥1 using equation (3.12) and subsequently 𝑁𝑁1 = 𝑥𝑥1𝑁𝑁 so that we can 
calculate any of the system state variables, e.g. 
  

 𝑁𝑁1 =
𝑢𝑢 + 1

2
𝑁𝑁 (3.55) 

 
No matter what the initial value of 𝑥𝑥0, 𝑁𝑁1 always approaches 𝑁𝑁/2 as 𝑡𝑡 → ∞. We can tell this from 
equation (3.55) because 𝑢𝑢 → 0 as 𝑡𝑡 → ∞. If a real system does not behave this way, then the model 
is not applicable. 
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In our marble game, the order parameter 𝑢𝑢 is a measure of order. The order parameter has a 
minimum magnitude of 𝑢𝑢 = 0 at equilibrium (maximum disorder). If you understand why the 
order parameter tends towards 𝑢𝑢 = 0, you can also understand the second law of thermodynamics, 
which states that isolated systems always move (on average) towards maximum disorder 
(entropy). We’ll investigate the connection between entropy, order, the second law of 
thermodynamics and the marble game in CHAPTER 8. 
 
Equation (3.17) predicts the precise shape of the 𝑢𝑢 versus 𝑡𝑡 curve for a marble game system of 
any number of marbles 𝑁𝑁 and jump rate constant 𝑘𝑘. This is a rather detailed (and profound) 
testable hypothesis of the model (the FD method makes exactly the same prediction). One 
(perhaps surprising) prediction is that the rate of the approach to equilibrium does not depend on 
the number of marbles 𝑁𝑁, but only on the jump rate constant 𝑘𝑘. If we believe that this model 
explains the behavior of a real system, then we can use these testable hypotheses to confirm that 
the model is applicable. For example, in this chapter we have shown that this mathematical model 
successfully predicts the ensemble average behavior of our kMC simulations. In the following 
chapters, beginning with CHAPTER 4, we’ll develop models of real systems and then test the 
hypothesis that the model predicts the behavior of the real system by comparing the model 
predictions with real experimental (or clinical) data. Even if the model turns out to not model the 
real system accurately, then we still learn something about the system… at least one of the model 
assumptions is not correct. If you can figure out which assumption(s) are incorrect – and how to 
change them to model the real system better – then you’ll discover even more about how the 
molecules of life actually work.  
 
Barb’s medical physiology textbook explanation that O2 molecules diffuse from high to low 
values of oxygen tension 𝑃𝑃O2 (or partial pressure) is an example of how comparisons with 
thermodynamically comparable reference states can predict how a system will behave when it is 
not at equilibrium. As characterized by its partial pressure 𝑃𝑃O2, the ideal gas reference state is 
used as a measure (an indication of the value of) the chemical potential of the O2 in the plasma 
by stating the partial pressure 𝑃𝑃O2 of a gas phase that would be in equilibrium with it. By using 
this method for specifying the chemical potential, it’s possible to directly compare the plasma and 
the gas using the same measure – 𝑃𝑃O2. However, this approach obscures the fact that the gas phase 
is preferred forty-to-one over the gas phase at equilibrium (as summarized in equation (3.45)). As 
you discovered, the resolution of Dion’s oxygen uptake conundrum (from CHAPTER 1) is this – 
the forty-fold difference in the inward and outward jump rates corresponds to a forty-fold 
difference in the O2 concentrations at equilibrium, i.e. the O2 concentration is forty times higher 
in the gas than in the plasma at equilibrium. 
 
This chapter has been our introduction to finite difference methods. As we’ve discovered, they 
are extremely powerful, and we’ll be using them extensively in the following chapters. However, 
you should also remember that FD methods only predict the ensemble average behavior. So, 
don’t forget the marble game – a kMC simulation is always a more realistic representation of the 
random events occurring at the molecular level. 
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Summary: Finite difference method and O2 

Key math and computational science concepts 

Finite difference (FD) method 
• Concentrations are analyzed at discrete locations (boxes).  
• During a small timestep δ𝑡𝑡, the small change in concentration δ𝑐𝑐𝑝𝑝 can be determined from 

an FD diagram (Figure 3.6) 

 
Figure 3.6 FD diagram for blood plasma oxygenation (repeated from main text). 

 
to give an FD equation 

 δ𝑐𝑐𝑝𝑝 = �𝑘𝑘𝑎𝑎𝑐𝑐𝑔𝑔 − 𝑘𝑘𝑑𝑑𝑐𝑐𝑝𝑝�δ𝑡𝑡 (3.39) 
and predict that 

 𝑐𝑐𝑝𝑝new = 𝑐𝑐𝑝𝑝old + δ𝑐𝑐𝑝𝑝new (3.54) 
 

• It’s important to remember that the purpose of an FD equation like (3.39) is to allow us to 
calculate how a variable (e.g. 𝑐𝑐𝑝𝑝 or 𝑢𝑢) changes. That change can then be used to calculate 
the new value using an FD update equation (3.54), which is always of the form  
 

 𝑢𝑢new = 𝑢𝑢old + δ𝑢𝑢new (3.31) 
 
– the  new 𝑢𝑢 is the old 𝑢𝑢 plus the change in 𝑢𝑢 – self-improvement  using the FD method! 

• When the FD method is implemented in a spreadsheet, the timestep δ𝑡𝑡 is an adjustable 
parameter that should be decreased until it no longer affects the graph of 𝑐𝑐𝑝𝑝(𝑡𝑡) so that you 
have a smooth accurate curve. You will also need to make sure that you increase the 
number of FD steps accordingly.  

• In the limit that δ𝑡𝑡 → 0, the FD ratio becomes a derivative 
 

 lim
δ𝑘𝑘→0

δ𝑐𝑐𝑝𝑝
δ𝑡𝑡

=
d𝑐𝑐𝑝𝑝
d𝑡𝑡

 (3.56) 

 
and in some cases, we can obtain an analytical solution to the FD equation using calculus. 

 
𝑘𝑘𝑑𝑑𝑐𝑐𝑝𝑝 

𝒑𝒑 
𝑘𝑘𝑎𝑎𝑐𝑐𝑔𝑔 

𝒈𝒈 

plasma  gas  
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Key chemistry concepts 

Equilibrium constants predict equilibrium ratios 
• Rate constants – describe how frequently a molecule jumps between boxes (in a particular 

direction) as a result of random thermal motion (a passive process). 
• Equilibrium constants – are determined by the ratio of the rate constants.  
• For the original marble game, the rate constant is the same (𝑘𝑘) in both directions and the 

equilibrium constant is 𝐾𝐾eq = 1 so that the prediction is that 𝑁𝑁1 = 𝑁𝑁2 at equilibrium. 
• For plasma oxygenation the equilibrium association constant is given by  

 

 𝐾𝐾𝑎𝑎 ≜
𝑘𝑘𝑎𝑎
𝑘𝑘𝑑𝑑

 (3.36) 

 
• Concentration 𝑐𝑐 [=] mol/L – number in a box (𝑜𝑜 [=] mol) divided by the volume of the 

box (𝑉𝑉 [=] L). 
 𝑐𝑐 ≜

𝑜𝑜
𝑉𝑉

 (3.57) 
 

• Steady state – occurs when state variables, e.g. 𝑐𝑐𝑝𝑝, are steady and don’t change, i.e.  
 

 δ𝑐𝑐𝑝𝑝 = 0 (3.58) 
 

• Equilibrium – is a special type of steady state where there is also no change in the 
environment. For example, at equilibrium δ𝑐𝑐𝑝𝑝 = 0 and δ𝑐𝑐𝑔𝑔 = 0 and the ratio of the 
concentrations is predicted by the equilibrium constant 
 

 
𝑐𝑐𝑝𝑝
𝑐𝑐𝑔𝑔

= 𝐾𝐾𝑎𝑎 (3.37) 

 
• Normalized order parameter 𝑢𝑢 – the fractional distance that the marble game is away 

from equilibrium. The marble game is most ordered (|𝑢𝑢| = 1) when we know where all 
the marbles are and most disordered (𝑢𝑢 = 0) when we have the maximum uncertainty 
about where a particular marble is located. According to equation (3.16) δ𝑢𝑢 = −2𝑘𝑘𝑢𝑢δ𝑡𝑡 
and the change in the order parameter δ𝑢𝑢 is proportional to its current value 𝑢𝑢. This 
produces an exponential decay  

 𝑢𝑢 = 𝑢𝑢0𝑆𝑆−2𝑘𝑘𝑘𝑘 (3.17) 
 
towards equilibrium and maximum disorder (𝑢𝑢 = 0) from any possible initial value 𝑢𝑢0. 
This exponential behavior (decay or growth) is extremely common in science and occurs 
whenever the change in a quantity is proportional to its current value. We’ll see many 
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examples of this, starting with CHAPTER 4 and ending with the COVID-19 pandemic in 
CHAPTER 12. 

Key physiology concepts 

Plasma oxygenation 
• The FD model predicts that the equilibrium association constant for O2 in blood plasma is 

given by  

 𝐾𝐾𝑎𝑎 ≜
𝑘𝑘𝑎𝑎
𝑘𝑘𝑑𝑑

=
1

40
= 0.025 (3.36) 

 
so that the equilibrium concentration of oxygen in plasma 𝑐𝑐𝑝𝑝 is given by  

 
 𝑐𝑐𝑝𝑝 = 𝐾𝐾𝑎𝑎𝑐𝑐𝑔𝑔 = 𝜎𝜎𝑃𝑃𝑔𝑔 (3.45) & (3.48) 

 
where 𝑃𝑃𝑔𝑔 is the (actual) partial pressure of O2 in the gas and 𝜎𝜎 is the plasma O2 solubility 

 

 𝜎𝜎 = 9.6 × 10−9
mol

L ∙ Pa
= 1.3 × 10−6

mol
L ∙ mmHg

 (3.59) 

 
• Rearranging equation (3.48) gives  

 𝑃𝑃O2 =
𝑐𝑐𝑝𝑝
𝜎𝜎

 (3.49) 
 
which defines the oxygen tension 𝑃𝑃O2 – the partial pressure of O2 that it would be in 
equilibrium with 𝑐𝑐𝑝𝑝. The oxygen tension 𝑃𝑃O2 is the standard medical measure of plasma 
O2 concentration that allows direct numerical comparisons between different oxygen 
environments (but it obscures the effect of limited solubility on the O2 concentration).  

Key scientific concepts 

Scientific research 
• Quantitative scientific models make a network of testable hypotheses. 
• We found graphical evidence to support the hypothesis that the FD method predicts the 

ensemble average of our kMC sims. 
• Our conclusion is that the FD method can be used to predict the ensemble average 

behavior of systems that can be represented by an FD diagram.  

Terminology to remember 
• Steady-state – none of the system properties (variables) change (on average) with time 

e.g. δ𝑐𝑐𝑝𝑝 = 0 and δ𝑐𝑐𝑔𝑔 = 0.  
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• Thermodynamic equilibrium – both the system and its environment must be at steady-
state. 

• Timestep δ𝑡𝑡 – a freely adjustable parameter in FD methods. You need to make this 
small enough that your FD model is sufficiently accurate. 

Reminder – find your mistakes with units, Units, UNITS! 
• Getting the units right in biophysics and physiological modeling is always an ongoing 

struggle. If you work with quantitative models, you will make mistakes! I often tell my 
students that the following is my favorite question in all of physics and biophysics…  
 

Q. “Do the units matter?” 
A. ALWAYS!  

 
• Watch the video “My favorite physics mistake” http://youtu.be/7lMadULeBXc for how 

units saved my life! 
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Appendix – Answer graphs 

Figure A3.1 – Theory vs. sim 

 
Figure A3.1 Excel 2016 chart of the two-box marble game. Comparing kMC simulation with the FD method 
for a system with 𝑁𝑁 = 500, 𝑘𝑘 = 0.05 s−1 and 𝑥𝑥0 = 1. Note: The mean residence time is 𝜏𝜏 = 1/𝑘𝑘 = 20 s 
and the system is close to equilibrium at 𝑡𝑡 = 2𝜏𝜏 = 40 s. 

 
Return to main text  

Figure A3.2 – Errors are transient 

 
Figure A3.2 Excel 2016 chart of the two-box system. Comparing FD method for the order parameter 𝑢𝑢 with 
theory (equation (3.17)) with 𝑘𝑘 = 0.05 s−1 and δ𝑡𝑡 = 0.5 s.  

 
Return to main text 
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Figure A3.3 – Design your own graph 
 

 
Figure A3.3 Excel 2016 chart of the FD method for blood plasma oxygenation. See the main text for rate 
constants and initial concentrations. 

 
Return to main text 
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