Introduction: Camp Omelet

The marble game we developed in Chapter 1 is an excellent way to understand how diffusion works, but it’s still just a game. In this chapter we’ll learn how to turn the marble game into a realistic simulation of physiological situations ranging from single molecules up to the entire human body (drug elimination). In order to do that, we’ll need to learn an essential skill for later chapters – how to design and implement quantitative models using algorithms. An algorithm is like the recipe for an omelet. It’s a list of ingredients and a set of instructions written in a form that someone else can understand and follow to perform a complex task. Imagine…

Your family’s going camping over Mother’s Day weekend. The family tradition is for you to make Mom’s favorite omelets for breakfast, but you’re going to be out of town for an important interview at a research university. Your little brother Bert is willing to cook the omelets, but he’s never made them before. You’re about to get on a plane, but before you do, you need to email instructions to him. The family will be camping in a tent overnight, so Bert will need to collect everything he needs before they leave this afternoon, including the special ingredients – a pinch of dried tarragon and crumbled blue cheese that are lightly beaten into the egg mixture before it’s cooked. Oh, and just to make life more interesting, the Fowlers (from next door) are probably coming, but Bert won’t know how many to cook for until after you get on the plane.

Q.2.1 DISCUSSION QUESTION Write the email for Bert. He’s promised to follow your instructions carefully, but you’ll have to make them as clear and complete as possible. Bert has a family reputation for being very meticulous and extremely literal. If you forget something in your email, he’ll be sure to let everyone know that he was just following your instructions.

Hint: If you’ve never made an omelet before, you should Google “basic omelet recipe” to get an idea of how to do it.

About what you discovered: good recipes make good omelets

Writing instructions like this from memory is actually a significant challenge. A good strategy is to imagine being in Bert’s shoes on Mother’s Day morning, and then to picture in your mind what he will have to do. If you do that, you should realize that Bert will need to take some basic kitchen utensils with him to make the omelets, including a frying pan. Heads up: This question makes a good in-class activity, so take the task seriously. Your instructor might choose your recipe as an eggs-ample (sorry, I couldn’t resist!).
Most people would find this task easier if they could do a practice run and actually make an omelet while writing out the instructions for Bert. The same applies to algorithms. That’s why we’ll always test out our algorithms by filling in an output table at the same time that we’re writing out the algorithm. Using this procedure, we’ll discover any deficiencies in our algorithm before we tangle with Excel.

Algorithms are like recipes

In a lot of ways, writing an Excel spreadsheet is very much like writing the instructions for Bert. However, Excel is even more literal! Excel will blithely follow your instructions even if they don’t make any sense at all! If you make a typo, Excel will do something unexpected or simply return a cryptic message like #NAME? to tell you that it didn’t recognize what you typed. Writing an algorithm can be much more challenging than writing out instructions for something that you already know how to do (like cooking Mom’s favorite omelet). In this book, we’ll often want to write an algorithm for something that we’ve never even thought of before! Luckily, unlike the omelet example, we’ll be able to test out our algorithm while we’re writing it out. That way, if we make a mistake (like forgetting to include the number of people eating in the recipe) we’ll be able to fix that before we start with the spreadsheet.

In **SECTION 2.1** of this chapter, we’ll learn how to write an algorithm and then test it (by hand). Along the way, we’ll learn about the two main parts of our algorithm: parameters and variables. Parameters are like the number of people eating and they don’t change while we’re cooking. Variables are like the eggs and do change while we’re cooking the recipe. N (the total number of marbles) will be a parameter, that way we can easily change the number of marbles in the game (just like the number people eating). We’ll also add a jump rate constant k to describe how frequently (fast) the marbles jump from box to box. The main practical purpose of **SECTION 2.1** is for us to learn the composite process of (a) writing an algorithm; and (b) simultaneously testing that it works correctly by calculating an output table (by hand – using the algorithm – as we write it).

In **SECTION 2.2**, we’ll use our (pretested) algorithm to write a spreadsheet to get Excel to do all the hard work. We’ll also learn about how parameters should be referred to using “absolute cell references” in Excel so that each cell knows exactly where the parameter is located. If the spreadsheet isn’t working correctly, we’ll use our tested algorithm to figure out what went wrong. Getting the bugs out, or “debugging the spreadsheet”, is much easier if you can compare what it’s actually doing with what you know should happen (based on the algorithm). Everybody makes mistakes – nobody’s perfect… including me! – I found many bugs when I was first working on these spreadsheets…

Once we’ve completed the spreadsheet and tested that it’s working correctly, we’ll use it in **SECTION 2.3** to discover how the sim properties depend on the number of marbles N – if everything else remains the same (including the jump rate constant k). In **SECTION 2.4** we’ll discover that the marble game can be adjusted to model physiological systems ranging from the size of a single molecule up to the entire human body. We can do this by changing what the
marbles and boxes represent and by changing the value of the jump rate constants k to realistic values for those systems. The fastest rate constants go with the molecular demons of speed – ion channels and aquaporins (water channels) where the jumps take just nanoseconds, and the slowest rate constants can be associated with processes that can take decades – like removing heavy metals (like lead) from bone.

Finally, in **SECTION 2.5** we’ll learn how to develop a marble game simulation of drug elimination from the body. Using this simple sim we’ll study the “pharmacokinetics” of elimination of a pain killer – TYLENOL® (whose generic name is acetaminophen in the USA and paracetamol almost everywhere else) and discover that our sim *predicts* the exponential decay observed clinically. This simple sim also explains a fundamental quantity in the subject of pharmacokinetics – the drug half-life. Let the games begin…

2.1 Generalizing the marble game

In Sections 1.4 and 1.5 of **CHAPTER 1** we discovered that changing the number of marbles from $N = 10$ to $N = 100$ or $N = 200$ dramatically changes how the game plays. However, to make that change we had to modify 1000 cells. Wouldn’t it be great if we could change just one cell and get the same results? If we could also change the marble jumping rates, then the same basic model can be used for an amazing wide range of physiological systems from a single molecule to the entire human body (as we’ll see in **SECTION 2.4** of this chapter). Rather than just diving in and changing the spreadsheet, we’ll talk first about a fantastically useful technique for designing simulations (or for designing *any* process).

Algorithm development & explaining what a simulation does

An algorithm is a complete set of instructions that you (or your little brother) could follow to perform the simulation by hand. While it’s fairly easy to construct a spreadsheet from an algorithm, it can be extremely difficult to do the reverse – to figure out the steps of a complicated algorithm, just by looking at a spreadsheet! From now on, we’ll write an algorithm and then work through it by hand… before diving into Excel. While you’re doing that, you’ll sometimes realize that you’re missing an important ingredient (like N in the example above). It’s usually much easier to change a handwritten algorithm than it is to reorganize a large spreadsheet full of cross references.

Marble game simulation model

Figure 2.1 Schematic representation of the marble game kinetic Monte Carlo (kMC) simulation model. The particles move just like in the original marble game, but the jumping rate is now characterized by a rate constant k.
In the **model** shown in Figure 2.1 we’re thinking of a **system** of small particles (such as oxygen molecules) that are being constantly jostled by the surrounding molecules because they are all in **random thermal motion**. As a result, the particles appear to jump around randomly. This random jumping is called **Brownian motion** and occurs even for particles that are much larger than water molecules. It was first noticed by Robert Brown, way back in the late 1820’s, when he observed pollen grains jiggling around while they were suspended in water. For more information refer back to Figure 1.4 and the related **Brownian motion demo**. We’ll be studying Brownian motion in more detail in **CHAPTER R**.

After jiggling around for a while, a particle can end up in the other box. The average rate at which these inter-box **jumps** occur is \(k \) jumps per second *per particle*. The actual value of \(k \) for a particular physical system will depend on many of its properties, such as the identity of the particles, the size and location of the boxes and whether there’s a membrane between the boxes. Just for now, we’ll do the same thing that you did in chemistry – and assume that the jump rate constant \(k \) can be determined from experiment. For the sake of argument, let’s think of a system like our original marble game, where each particle jumps to the other box with an average rate of three jumps per minute (or 1 jump per 20 seconds). This can be summarized mathematically by the **jump rate constant** \(k \)

\[
k = \frac{3 \text{ jumps}}{\text{min}} \left(\frac{1 \text{ min}}{60 \text{ s}} \right) = 0.05 \frac{1}{\text{s}} = 0.05 \text{ s}^{-1}
\]

Where we’ve “done algebra” with the units to get the final equivalent form of \(k = 0.05 \text{ s}^{-1} \). This means that the jump rate constant \(k \) has units of \(\text{s}^{-1} \) (or 1/s), which is pronounced “per second.” This can be abbreviated as \(k \ [=] \text{s}^{-1} \), where the symbol \([=]\) reads “has units of”.

About what you discovered: units and unit conversions

The **jump rate constant** \(k \) is the number jumps a marble takes per unit time *on average*. If we use minutes for time, \(k \) is three jumps per minute (per marble). Equation (2.1) converts this rate into a jump rate per second. The word “jumps” is struck out in equation (2.1) because jumps \([=] 1 \) (have the same units as the number 1), i.e. “jumps” have no SI units because they’re a simple count of how many (jumps) occur in one minute. The factor in parentheses is a **unit conversion**. If we multiply \(k \) by the same thing (1 min) over the same thing (60 s), that’s the same as multiplying \(k \) by one, which doesn’t change \(k \). The “min”s cancel producing the final result of \(3/60 = 0.05 \) (jumps) per second. We’ll be talking more about units in **CHAPTER 3**.

This model is identical to the original marble game, but now there’s a definite amount of physical time that’s associated with each **step** (turn) of the **simulation** (game). How much time? Well, if one particle has a jump rate of \(k \) times a second, then \(N \) particles will have a **combined jump rate** of \(Nk \) jumps per second. This means that the average time \(\Delta t \) between jumps (average time interval between the jump of one particle and the next jump of any one of the particles) is given by
\[\Delta t = \frac{1}{Nk} \] (2.2)

where the symbol \(\Delta \) is the uppercase Greek letter “D,” which is pronounced “delta.” Delta is used to indicate a difference or change in a time between jumps. Watch the Greek letters go green! video [Nelson 2013] for a review of the Greek alphabet.

According to equation (2.2), if we know \(k \) and \(N \) for our simulation, then the average amount of time associated with each simulation step is completely determined. For example, if \(k = 0.05 \) s\(^{-1}\) and \(N = 10 \), then equation (2.2) tells us that \(\Delta t = 2 \) s, i.e. each turn in the marble game takes 2 seconds. This means that the timestep \(\Delta t \) has units of seconds. Monte Carlo simulations that have a time interval \(\Delta t \) associated with each step are called kinetic Monte Carlo (kMC) sims to highlight that they have realistic kinetics \(k \) included. [Fichthorn and Weinberg in https://en.wikipedia.org/wiki/Kinetic_Monte_Carlo#cite_ref-13]]

About what you discovered: how to do better on tests!

Equation (2.2) is an example of an equation that you might forget on a test in one of your science classes. However, if you remember that the definition of \(k \) is the rate at which one particle jumps, so that it \(= \) s\(^{-1}\) (has units of per second), then you should be able to figure out the equation for \(\Delta t \) the average time between jumps of \(N \) particles using dimensional analysis. The \(N \) particles jump at a combined rate of \(Nk \). Now \(N = 1 \), meaning \(N \) has the units of a number (e.g. 1) i.e. no units. Hence, if one particle jumps with rate \(k = \) s\(^{-1}\) then \(N \) particles jump at rate \(Nk = \) s\(^{-1}\). The quantity that we’re looking for (timestep) has units of seconds (\(\Delta t = \) s). Hence, just by comparing the units, we can guess that \(\Delta t = 1/(Nk) \) because this equation is dimensionally correct. This is no absolute guarantee that your equation is correct, but it’s a really good guess! Hence, always remember that dimensional analysis can help you do better on tests!

If we focus on just one of the marbles in our simulation game, we can ask how long it takes for it to jump to the other box on average. This mean residence time \(\tau \) (average time a marble stays in a box) is given by equation (2.2) with \(N = 1 \) and \(\Delta t = \tau \), i.e.

\[\tau = \frac{1}{k} \] (2.3)

where the symbol \(\tau \) is the lowercase Greek letter “\(\tau \)”, which is pronounced “tau” [Nelson 2013]. Using the Greek letter tau helps to distinguish the mean residence time from all the other times that we’ll be talking about. Equation (2.3) states that the jump rate constant \(k \) and mean residence time \(\tau \) provide the same basic information about the timescale of the jumps. If you know one, then you can calculate the other. I.e. if \(k = 1/(20 \) s\) then \(\tau = 20 \) s.
About what you discovered: equations describe relationships

Consider the following question and answer about familial relationships: *Who is the daughter of your grandmother’s son’s sister?* If a person answers – “I am.” – then we can infer a number of things. (i) The person is female and (ii) she has an uncle on her mother’s side of the family. The question and answer provide relationships that can be combined to infer (i) and (ii). In an analogous manner, equations describe *mathematical relationships* between physical things. When these relationships are combined using algebra, they allow us to infer new relationships. As an example, equation (2.2) $\Delta t = 1/(Nk)$ can be combined with equation (2.3) $\tau = 1/k$ to infer that

$$\Delta t = \frac{\tau}{N} (2.4)$$

i.e. the timestep in the kMC simulation is proportional to the mean residence time τ and *inversely proportional* to the number of marbles N. From equation (2.3) we can also infer that the mean residence time τ does not depend on N. Hence, an individual marble jumps at the same rate *independent of how many other marbles there are*. The fact that τ is a property of a single marble (independent of N) is an important physical feature of our marble game: – marble independence.

About what you discovered: residence time, jump time, dwell time etc.

This concept of how long a molecule stays in a particular place (or state) is becoming a much more commonly discussed concept in biophysics, molecular biology and biochemistry as science becomes increasingly focused on the behavior of individual molecules.

Finally, as we’re interested in being able to change the number of marbles in the system (i.e. N) and then to compare different systems, we’ll introduce a variable

$$x_1 = \frac{N_1}{N} (2.5)$$

for the fraction of marbles in box 1 (Figure 2.1). When you read this equation, you should recall that N is the total number of marbles in the system, which is related to the number in each box by the relationship

$$N = N_1 + N_2 (2.6)$$

To see why x_1 is useful, think about $x_1 = 0.5$. Any simulation that has an equal number of particles in each of the two boxes has $x_1 = 0.5$, independent of the number of marbles N in the marble game. N_1 tells us exactly the same information, but its value depends on the number of marbles N. x_1 is an *intensive property*, because it does not depend on “system size” (in this case the total number of marbles), whereas N_1 is an *extensive property*, because it does depend on the total number of marbles in the game. Both ways of describing the location of the particles are useful.
We’re now going to talk about how to write an algorithm that completely describes the sim. When you’re working on an algorithm you should write out your answer using pencil and paper (just like working physics problems). In my experience, most students find it much easier that way… you can take a photograph of (or scan) the handwritten answer and paste it into a Word document with the rest of your answer. Most people find that typing algorithms in Word is a little awkward because of the complex formatting that’s needed. When we’re done writing the algorithm, it should look something like Figure 2.2.

The algorithm is just like the recipe for Mom’s favorite omelet. It can be broken down into a list of ingredients (parameters and variables) and a set of instructions (step 0, step 1, step 2…) – see Figure 2.2. In the following sections, we’ll go through the algorithm and explain what all the parts are. Being able to write algorithms a skill that you’ll use over and over in this book.

The algorithm

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Variables</th>
<th>Step 0</th>
<th>Step 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N = 10)</td>
<td>(N_1)</td>
<td>(N_{\text{old}} = 0)</td>
<td>(N_{\text{new}} = N_{\text{old}} + 1)</td>
</tr>
<tr>
<td>(k(s^{-1}) = 0.05)</td>
<td>(x_0)</td>
<td>(x_{\text{new}} = x_{\text{old}})</td>
<td>(x_{\text{new}} = \frac{N_{\text{new}}}{N})</td>
</tr>
<tr>
<td>(\Delta t(s) = 1/(Nk))</td>
<td>(N_{\text{old}})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_0 = 0.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unit Check: \(\Delta t(s) = \frac{1}{Nk} \geq \frac{1}{10 \cdot 0.05} = 20\) s

The algorithm in Figure 2.2 is describes our kinetic Monte Carlo sim of the marble game with \(N = 10\), \(k = 0.05\) s\(^{-1}\), and \(x_0 = 0.3\), where \(x_0\) is the initial fraction of marbles in box 1. The subscript 0 is pronounced “naught” – for zero time. The discussion of Tables 2.1 – 2.6 below explains what the algorithm should include. You don’t need to include the “Comment or explanation”, but for full credit you must include the units with any parameter or variable when it’s introduced (see Figure 2.2).

The numerical things that you need to know before the simulation can start are called parameters – see Table 2.1. If you change a parameter, you end up changing the whole simulation. \(N\) is the total number of particles in the marble game system. \(N = 10\) in the original marble game. \(N\) has no units. It’s a dimensionless quantity because it’s a counting number. \(k\) is the rate constant for jumps of any particle. We’ve written this out in the format \(k\) (s\(^{-1}\)) = 0.05. The parameter letter \(k\) appears first and is followed by the units in parentheses (s\(^{-1}\)) so that the following number 0.05 means one twentieth of a jump per second (or 1 jump per 20 seconds). All parameters that have units should be written in this format… The reason for this should become clearer in Section 2.2.
below. The basic idea is that “$k \, (s^{-1})$” as a heading for the number that appears below it in the spreadsheet. If you include the units in the heading, then you don’t need units with the number itself.

Table 2.1 Parameter list for the marble game kMC algorithm

<table>
<thead>
<tr>
<th>Parameter (units) = value</th>
<th>Comment or explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N = 10$</td>
<td>total number of particles</td>
</tr>
<tr>
<td>$k , (s^{-1}) = 0.05$</td>
<td>jump rate constant (per particle per second)</td>
</tr>
<tr>
<td>$\Delta t , (s) = 1/(N \times k)$</td>
<td>time between jumps</td>
</tr>
<tr>
<td>$x_0 = 0.3$</td>
<td>initial value of the fraction in box 1</td>
</tr>
</tbody>
</table>

Δt is the amount of time (in seconds) that elapses between steps in the simulation. This is a calculated parameter that depends on the values of the two previous parameters. Your algorithm should specify that the equation $\Delta t \, (s) = 1/(N \times k)$ will be used to calculate it in the spreadsheet. If you entered the value of $\Delta t \, (s) = 2$ then you’d have to change the algorithm every time you changed either N or k! Entering the formula, Δt remains correct even if you change N or k (or both). This is like the instructions for Bert saying “bring three eggs per person.” The “$\Delta t \, (s)$” will be a heading in Excel so it needs units. The expression on the right “$= 1/(N \times k)$” doesn’t need units, because we’ve already defined k and N. In the algorithm, the fraction is written as an inline equation with parentheses. A * sign is used for multiplication because that’s the format that Excel understands. Recall that the purpose of writing an algorithm is set out what you’ll type into Excel. Everywhere else in this book we’ll use the usual math format $\frac{1}{Nk}$ which doesn’t require the parentheses or the asterisk.

Warning: If you type $1/N \times k$ into Excel you’ll get the wrong answer! The parentheses are required for the inline equation to work correctly in Excel. Now that you’ve been warned, don’t fall into this common trap for new players!

About what you discovered: algorithms are formatted to match Excel input

The algorithm format used in Figure 2.2 is designed to match what you will input into Excel. That way after you’ve written the algorithm you can focus on simply typing it into Excel correctly without having to rearrange equations or work out heading formats. While you’re writing an algorithm, you should remember its purpose: to make entering the spreadsheet as painless and error free as possible. Hence, don’t forget to use the rules for inline equations.

x_0 tells us how many particles to put in box 1 at Step 0 (zero) of the simulation. For example, $N = 10$ and $x_0 = 0.3$ will give $N_1 = 3$ particles in box 1 at the beginning of the simulation.

The list of ingredients that change in the simulation are the variables. These are listed in Table 2.2. While you’re writing out an algorithm, it’s a good idea to leave extra space in the parameter and variable lists. It’s common to discover that you’ve forgotten a key ingredient that wasn’t
obvious at the beginning. For example, while writing out the recipe for Mom’s favorite omelet, you might not remember that salt and pepper (to taste) are ingredients until the omelet is cooked.

Table 2.2 Variable list for the marble game kMC algorithm

<table>
<thead>
<tr>
<th>Variable(units)</th>
<th>Comment or explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>counter for number of simulation steps</td>
</tr>
<tr>
<td>t (s)</td>
<td>current elapsed time (in seconds)</td>
</tr>
<tr>
<td>r</td>
<td>random number of chosen marble</td>
</tr>
<tr>
<td>N_1</td>
<td>number of marbles in box 1</td>
</tr>
<tr>
<td>x_1</td>
<td>fraction in box 1</td>
</tr>
</tbody>
</table>

With the parameters and variables at hand, we’re now ready to write out the steps of the simulation. The first thing we need to do is set up the starting configuration of the sim. We’ll call this Step 0 as this **initialization** occurs before the simulation actually begins. As shown in Table 2.3, $Step^{new} = 0$ sets the value of $Step$ to zero at the beginning of the simulation. The superscript “new” indicates that we’re referring to the current step (Step 0). Similarly, $t^{new} = 0$ sets the first value of time to zero. **Note:** You don’t need to include the units here as they are already specified in the variable list. The equation $N_1^{new} = N * x_0$ calculates the initial value of N_1 (the value of N_1 in Step 0) from the parameters N and x_0. In our example, this equation calculates as $N_1 = 10 * 0.3 = 3$. **Note:** N and x_0 do not need a “new” superscript as they are parameters that don’t change during the simulation. The last thing we’ll do in Step 0 is to calculate the initial value of x_1 using the current value of N_1 (this matches what we’ll do in Step 1).

Table 2.3 Instructions for Step 0 of the marble game

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Comment or explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Step^{new} = 0$</td>
<td>initialize step count to zero</td>
</tr>
<tr>
<td>$t^{new} = 0$</td>
<td>initialize simulation clock to zero</td>
</tr>
<tr>
<td>$N_1^{new} = N * x_0$</td>
<td>calculate initial value of N_1 using parameters N and x_0</td>
</tr>
<tr>
<td>$x_1^{new} = N_1^{new} / N$</td>
<td>calculate initial fraction in box 1</td>
</tr>
</tbody>
</table>

As shown in Table 2.4, the Step 1 instruction $Step^{new} = Step^{old} + 1$ calculates the value of $Step$ for the current step by adding one to the previous value of $Step$. $t^{new} = t^{old} + \Delta t$ calculates the current time by adding Δt to the time in the previous step. You should note that the superscript “new” always refers to the value of the variable in the current step, and the superscript “old” always refers to the previous step. The instruction

$$r^{new} = \text{RANDBETWEEN}(1, N)$$ \hspace{1cm} (2.7)
selects one of the N particles at random with equal probability, just like rolling the ten-sided die. Note that this instruction, like the rest of the algorithm, uses N rather than the number 10. That way if we change the parameter N, the whole sim changes accordingly. The next instruction calculates the new value of N_1 based on the particle that was just chosen.

$$N_1^{\text{new}} = \text{IF}(r^{\text{new}} \leq N_1^{\text{old}}, N_1^{\text{old}} - 1, N_1^{\text{old}} + 1)$$ (2.8)

In words, if r^{new} is less than or equal to the value of N_1 in the previous step (N_1^{old}), then the new value (N_1^{new}) (in the current step) should be $N_1^{\text{old}} - 1$ (as a particle jumps out of box 1), otherwise the new value of N_1 should be $N_1^{\text{old}} + 1$ (as a particle jumps into box 1). You should note that these last two instructions describe exactly what we did in the original marble game. Finally, we calculate x_1^{new} using the exact same formula as in Step 0 (you should note that in this instruction we calculate x_1^{new} using the new value N_1^{new} and not the old value).

Table 2.4 Instructions for Step 1 of the marble game

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Comment or explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{\text{new}} = S_{\text{old}} + 1$</td>
<td>new Step is the previous value plus 1</td>
</tr>
<tr>
<td>$t^{\text{new}} = t^{\text{old}} + \Delta t$</td>
<td>increment clock using timestep Δt</td>
</tr>
<tr>
<td>$r^{\text{new}} = \text{RANDBETWEEN}(1, N)$</td>
<td>randomly choose one of the N marbles (call it r^{new})</td>
</tr>
<tr>
<td>$N_1^{\text{new}} = \text{IF}(r^{\text{new}} \leq N_1^{\text{old}}, N_1^{\text{old}} - 1, N_1^{\text{old}} + 1)$</td>
<td>if r^{new} is less than or equal to N_1^{old} jump $1 \rightarrow 2$ (N_1^{new} decreases), else jump $2 \rightarrow 1$ (N_1^{new} increases)</td>
</tr>
<tr>
<td>$x_1^{\text{new}} = N_1^{\text{new}}/N$</td>
<td>calculate new fraction in box 1</td>
</tr>
</tbody>
</table>

In the algorithm, it’s essential that we specify whether we’re talking about the new value (current step) or the old value (previous step). If you use the old value instead of the new value or vice versa, the algorithm will not work correctly! Mixing up references between new and old values is very common trap for new players. We’ll avoid this error by always explicitly labeling variables as being “old” or “new” in algorithm steps. As we’ve already discussed, parameters don’t need new or old labels as they don’t change from step to step.

Table 2.5 Instructions for Step 2 of the marble game (same as Step 1)

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Comment or explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{\text{new}} = S_{\text{old}} + 1$</td>
<td>new Step is the previous value plus 1</td>
</tr>
<tr>
<td>$t^{\text{new}} = t^{\text{old}} + \Delta t$</td>
<td>increment clock using timestep Δt</td>
</tr>
<tr>
<td>$r^{\text{new}} = \text{RANDBETWEEN}(1, N)$</td>
<td>randomly choose one of the N marbles (call it r^{new})</td>
</tr>
<tr>
<td>$N_1^{\text{new}} = \text{IF}(r^{\text{new}} \leq N_1^{\text{old}}, N_1^{\text{old}} - 1, N_1^{\text{old}} + 1)$</td>
<td>if r^{new} is less than or equal to N_1^{old} jump $1 \rightarrow 2$ (N_1^{new} decreases), else jump $2 \rightarrow 1$ (N_1^{new} increases)</td>
</tr>
<tr>
<td>$x_1^{\text{new}} = N_1^{\text{new}}/N$</td>
<td>calculate new fraction in box 1</td>
</tr>
</tbody>
</table>
If you look closely at Table 2.5, you’ll notice that Step 2 is identical to Step 1. The only difference is that “new” now refers to Step 2 and “old” now refers to Step 1. This did not happen by accident. When I wrote out Step 1, I made sure that the same algorithm statement would work for all the following steps 2, 3, 4… Because Step 2 just repeats Step 1, we can write it and the remaining steps as shown in Table 2.6.

Table 2.6 Alternate instruction for Step 2, 3…

| Repeat Step 1 for the desired number of steps |

Q.2.2 (a) Write out a complete kinetic Monte Carlo algorithm, including a unit check, to simulate a marble game system with $N = 10$, $k = 0.05 \, \text{s}^{-1}$, and $x_0 = 0.3$.

(b) Assume that the function RANDBETWEEN(1,10) produces the following sequence of fixed random numbers $r = 6, 4, 4, 7, 6, 3, 10…$ Using your algorithm, calculate by hand what happens for steps 0 through 4 and write your answer in the form of an output table.

Really long hint: Your answer to part (a) should look exactly like Figure 2.2. However, please don’t just copy Figure 2.2… the point is for you to discover if you can start out with a description of the system and then figure out the algorithm for yourself – from scratch. If you get stuck, use Figure 2.2 to remind yourself of what we’re aiming for… While you’re writing your algorithm for part (a), you should simultaneously fill in the corresponding entries in your output table for part (b) as shown in Table 2.7. As you write out the list of variables, you should transcribe them into your output table as headings. As you write out the instructions for step 0, you should then follow those instructions and fill in the corresponding row in the output table. Similarly, you should follow your instructions to fill in the output table row for step 1. Once that is working, you should then check to make sure that it also works correctly for the step 2 row. The point of doing parts (a) and (b) together is to check that your algorithm is working correctly – while you’re writing it. Your algorithm should also include a unit check for any equations using parameters or variables that have units. In this algorithm, the only calculation involving a unit change is equation (2.2), which is used to calculate Δt from k and N. Getting the units wrong is one of the most common traps for newbies and experts alike, so always include an explicit unit check in your algorithm (Figure 2.2), even if it’s not explicitly asked for.

Table 2.7 Output table for the marble game kMC algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>t (s)</th>
<th>r</th>
<th>N_1</th>
<th>x_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
<td>3</td>
<td>0.3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>0.4</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>0.3</td>
</tr>
</tbody>
</table>
When you’re done, you should carefully check that each entry in your output table matches the values in Table 2.7. **Note:** There is no random number \(r \) needed for **Step 0.** The first random number is used in **Step 1**, you should then use the fixed random numbers in order until you complete **Step 4.** You don’t need all the random numbers, just the first four. You should note that the heading for the time column is \(t \) (s). This exactly matches the listing \(t \) (s) in your algorithm in Figure 2.2 and Table 2.2. The part in parentheses \((s) \) is necessary to specify the units for the numbers in the time column. If the units are missing from the column heading, then the answer is just... **wrong!**

About what you discovered: writing and testing algorithms

Writing an algorithm is much easier if you combine writing the algorithm with testing it. I.e. you should do parts (a) and (b) of Q.2.2 **at the same time.** You should use **pencil** – because you’ll probably have to change or rearrange something along the way. Imagine writing a cookbook. The only way to ensure that the recipe is correct (and complete) is to use the recipe to actually cook the omelet. You then taste it to make sure that it’s good! ☑

Q.2.3

It’s extremely important that you understand how the instruction for \(N_1^{\text{new}} \) works in the fourth line of **Step 1**. To check that you really do understand how it works, rewrite the instruction for \(N_1^{\text{new}} \) in **Step 1**, by **filling in the blanks** in the following:

\[
N_1^{\text{new}} = \text{IF}(r^{\text{new}}>N_1^{\text{old}}, ___, ___) \quad (2.9)
\]

(note the greater than sign in the **Logical_test** of the **IF()** function). Your answer should be written as complete instruction in the style used in Figure 2.2. **Hint:** You need to figure out what the **value_if_true**, and the **value_if_false** should be in the **IF()** function so that the new game rule works correctly.

Q.2.4

Explain what would happen if you used the following instruction by mistake

\[
N_1^{\text{new}} = \text{IF}(r^{\text{new}}\geq N_1^{\text{old}}, N_1^{\text{old}}+1, N_1^{\text{old}}-1) \quad (2.10)
\]

(note the greater-than-or-equal-to sign in the **Logical_test** in the **IF()** function) instead of \(r^{\text{new}}>N_1^{\text{old}} \). Explain why this instruction would **not** play the game correctly. **Hint:** Think about how this instruction would work if \(N_1^{\text{old}} = 3 \) and you rolled \(r = 3 \). Would a marble go from box 1 \(\rightarrow \) 2?

2.2 The spreadsheet – putting Excel to work for you
We're now going to use the algorithm that we just developed to help us write a spreadsheet to get Excel to execute the kMC sim for us. After following the procedure outlined below, my spreadsheet looked like Figure 2.3. This spreadsheet is organized into different sections. **Column A** (cells A2:A12) contains the sim parameters. **Row 1** (cells A1:G1) contains table headings. **Row 2** (cells C2:G2) contains column headings. **Row 3** (cells C3:G3) contains the values (and formulas) for $S_{t=0}$. **Row 4** (cells C4:G4) contains the formulas for $S_{t=1}$. **Row 5** (cells C5:G5) contains the formulas for $S_{t=2}$ etc…

About what you discovered: careful reading is required!

As you may have noticed reading the preceding paragraph, you absolutely must read the instructions very carefully. If you don’t have two screens you might like to print this section out. There are lots of technical terms that must be interpreted correctly. For example, **Column A** means all the cells directly under the **heading and **Row 1** means all the cells directly to the right of the **heading. The notation A2:A12 is used in Excel to mean all the cells between cells A2 and A12 inclusive.

We’ll now go through what I did, so that you can enter and format your spreadsheet like mine. I’ll also mention some of the tricks I’ve learned for entering the spreadsheet. There are lots of ways of doing things in Excel. If you prefer a different way, that’s fine. All we really care about is whether the spreadsheet works correctly.

In Figure 2.3, cells A1 and C1:G1 contain table headings. Type in the text for cell A1. Then select cell A1 and go to the **Styles** tab and select the **cell style** Heading 1 like I did for Figure 2.3. To widen column A double click on the line between the A and B column labels. Then click drag the line between the B and C column labels, to make column B a narrow gap between the **parameters table** and the **sim table**. Type the sim table heading in cell C1, then select cells C1:G1 and select the cell style **Heading 1**. In the **Alignment** tab select **Merge & Center** to center the sim table heading.
In Figure 2.3, cell A2 contains the heading N and is formatted with the cell style Heading 2 – you need to apply the cell style to the cells first, before you start formatting subscripts and italics etc… Note that letters that stand for numbers are formatted in italics. Cell A3 contains the corresponding value 10. Cell A5 contains the heading k (1/s) and cell A6 contains the corresponding value 0.05. Note that the heading contains the units for the value in parentheses (1/s) or (s$^{-1}$), so that people reading the spreadsheet will know the units for k. This corresponds to the definition of k in the algorithm $k \text{ (s}^{-1}\text{)} = 0.05$ (see Figure 2.2 and Table 2.2). Cell A8 contains the heading Δt (s). You can insert the Greek letter Δ (Delta) using [Insert] > [Symbols]. Cell A9 contains the formula $= 1/($ into cell A9, you can then left-click on the numerical value for k in cell A6. This automatically inserts A6 into the Formula bar. Then type $*$ and left-click on the numerical value of N. Then type $)$ and hit the ENTER key. Check that you have the correct formula by left-clicking in cell A9. The Formula bar should now read $=1/(A6*A3)$. Don’t forget the parentheses or the asterisk – you need them! When entering spreadsheets from now on, we’ll put all the parameter names with units in parameter column A in the format that we just learned…

Each sim variable gets its own column in the sim table. Row 2 contains the headings for all the sim variables: S_{dtSS}, t (s), r, N_1 and x_1. The headings include units to indicate the units for all the numerical values in their respective column. The instructions for S_{dtSS} go into cells C3:G3 of row 3 of the spreadsheet. For the S_{dtSS} and t columns, just type 0 (zero) into the cells. Leave the cell for r empty (see Figure 2.3). For N_1, enter the formula from your algorithm, but refer to the numerical values for N and x_0 in cells A3 and A12. When you’re done, the formula in cell F3 should read $=A3*A12$. The value in cell F3 should be 3. For x_1 enter the formula from the algorithm and refer to the numerical value of N_1 in the current row and the value of N in the “Parameters” column. When you’re done, the value in cell G3 should be 0.3.

The value in the Step column tells us the step number for that entire row of the sim table. The algorithm formula for Step works just like turn in the original marble game. Row 4 (cells C4:G4) should have the formulas for Step 1 listed in the algorithm. The spreadsheet formula that you end up with in cell C4 should be $=C3+1$. Now enter the algorithm formula for t^{new}. You probably entered $=D3+A9$. This works just fine for Step 1, but it won’t work correctly for Step 2!… let’s see why…

Excel absolute cell references
The spreadsheet formula $=D3+A9$ uses the standard relative cell referencing method. Copy this formula from cell D4 to cell D5 using the standard left-click-drag method discussed in CHAPTER 1 and you’ll get a value of $t = 2$ s for Step 2 instead of $t = 4$ s, which is what it should be. So, what went wrong?
Unfortunately, this kind of error happens quite often when we’re working with Excel. So, let’s take this opportunity to learn how to debug our spreadsheet. We’ve identified that cell D5 is not working the way we wanted, so left-click in cell D5 and then in the Formula bar, you should then see something similar to Figure 2.4.

Figure 2.4 Screenshot from Excel 2016. Debugging the kMC sim by using the Formula Bar to show the cells actually used by Excel were not the ones we intended.

If you look closely, you’ll see that the formula Excel copied to cell D5 correctly refers to the previous value of t in cell D4, note the blue box around cell D4 and the blue D4 in the Formula bar. However, the formula Excel copied to cell D5 refers to A10 and not A9 as we intended, note the red box around cell A10 and the red A10 in the Formula bar. The reason this happened was because Excel assumed that you wanted to use a relative reference for Δt, i.e. “two cells to the left and six cells down”. What we actually want to do is to “always use cell A9.” To do this we need to enter =D4+A9 into cell D5. The $ in front of the A means always use column A. The $ in front of the 9 means always use row 9. A9 is an absolute cell reference, because we absolutely (only) want to use A9. In our spreadsheet, all the parameters are in column A. Hence, as a general rule, any cell references that start with A should be absolute references.

Addressing modes

There are four kinds of cell addresses in Excel: (i) A9 means the standard relative addressing for both column and row; (ii) A9 means always use column A and always use row 9; (iii) A$9 means use relative addressing for the column, but always use row 9; and (iv) A9 means always use column A, but use relative addressing for the row. On a PC you can cycle between the four choices after you’ve entered a cell address in a cell or in the Formula bar, or a dialog box, by pressing the F4 function key on the keyboard. We’ll use some of these choices in later chapters.
Let’s see what happens if we go back and use an absolute reference for the value of Δt in cell D4. Delete the contents of cells D4 and D5 then enter the formula for cell D4. As mentioned above, you can enter $A9$ into a formula by left-clicking on cell A9 and then pressing the F4 function key. After you’re finished, the formula should read $=D3+A9$. If you copy this formula from cell D4 into cell D5 using the left-click-drag method, you’ll get the desired result in cell D5 i.e. $=D4+A9$. Confirm this by left-clicking in cell D5 (after the copy) and then left-click in the Formula bar. Your spreadsheet should look something like Figure 2.5. Notice that in the copied formula, the reference to t changes to D4 after the copy – because we entered a relative cell reference D3, whereas the reference to Δt does not change after the copy – because we entered an absolute cell reference $A9$. Also note that by clicking in the Formula bar, the cells that are actually being used are highlighted by colored boxes. This is the best way to check that any formula copied by Excel is actually the that one we intended. We’ve now successfully debugged the problem in our spreadsheet.

![Figure 2.5 Screenshot from Excel 2016 showing that the debugged spreadsheet correctly uses absolute referencing](image)

About what you discovered: debugging references

Unfortunately, this type of error – forgetting to use absolute addressing is a fairly common problem! If you just copied a section of a spreadsheet and you get weird error messages like #DIV/0, #VALUE! or #NUM! then there’s a good chance that they’re caused by a problem similar to the one that we just fixed… Now you know what to do…

Completing step 1

Okay, so now that we’ve figured out how to correctly refer to parameters in the spreadsheet, let’s finish Step 1. Delete the contents of D5 as they relate to Step 2 – we got a little ahead of ourselves.
(Don’t worry; we haven’t lost anything – the same formula is still in cell D4.) Enter the algorithm instruction for \(r \) in cell E4 … you should end up with \(\text{=RANDBETWEEN(1,}A3) \), note the A3.

The main logic of the algorithm goes into the cell for \(N_1 \). Remember that while you’re entering the formula you can left-click on a cell to insert its reference. After you’ve finished entering the formula from your algorithm, the value in cell F4 should be either 2 or 4. If you left-click in the cell F4 and then in the Formula bar, you can check that the formula you entered is doing what you intended. The formula should read \(\text{=IF(E4<=F3,F3-1,F3+1)} \) … don’t forget the first \(= \). The formula for \(x_1 \) should read \(\text{=F4/A3} \) when you’re done entering it.

That completes all of Step 1. To copy it, select all of Step 1 in your spreadsheet and left-click-drag copy it to make a 4-step simulation. The first thing we want to do with it is to check that it’s working correctly by comparing it with what we did by hand in Q.2.2…

Q.2.5 Replace the random numbers in steps 1 through 4 with the fixed random numbers \(r = 6, 4, 4, 7, 6, 3, 10\ldots \) by simply typing over the contents. Then compare the spreadsheet with your answer to Q.2.2 to make sure that it’s working properly. When it is working correctly, record it in Normal Mode by highlighting cells C1:G7 and copying (CTRL+C) and then [Paste as Picture] into MS Word.

Q.2.6 Delete steps 2 – 4 and replace the fixed random number in Step 1 with \(r^{\text{new}} = \text{RANDBETWEEN(1,}N) \). Select all of Step 1 and click-drag copy to make a 4-step simulation. Record the spreadsheet in Formula Auditing Mode (CTRL+`) by using [Paste as Picture] into Word.

Hint: Your answer should look something like Figure 2.6.

<table>
<thead>
<tr>
<th>Params</th>
<th>Marble game kMC sim table</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>(\text{Step})</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>(k) (1/s)</td>
<td>=C3+1</td>
</tr>
<tr>
<td>0.05</td>
<td>=C4+1</td>
</tr>
<tr>
<td>(\Delta t) (s)</td>
<td>=C6+1</td>
</tr>
<tr>
<td>(X_0)</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.6 Screenshot from Excel 2016 showing Formula Auditing Mode.

Check to make sure that your last row for Step etc… looks exactly the same as Figure 2.6. If it does, then you’ve got a working spreadsheet for the marble game simulation model and you should return the spreadsheet to Normal Mode (CTRL+`). Now would be an excellent time to save a copy of your spreadsheet using the method discussed in Chapter 1.
About what you discovered: writing and debugging spreadsheets

Implementing and debugging spreadsheets from an algorithm is one of the most important skills you’ll learn here. In some ways, this process is just like cranking through the algebra of a physics word problem. If you make one little mistake, the answer will be wrong and you’ll have to go back and figure out what went wrong. If you can’t find the bug in a reasonable amount of time, then it’s probably time to stop hitting your head against that brick wall. First go back and double check that the algorithm really is working correctly by checking it again carefully by hand. If the algorithm is correct, you should then rewrite the spreadsheet again from scratch using the algorithm by opening a blank workbook. As you enter each cell, check that it’s working correctly and that it’s producing exactly the same number you calculated in your output table. We used fixed random numbers in Q.2.2 so that this check will work.

2.3 Approach to equilibrium – does not depend on N

Once you get your spreadsheet working and you’ve replaced the fixed random numbers with $r_{\text{new}} = \text{RANDBETWEEN}(1, N)$, extend your simulation to 2000 steps and plot x_1, the fraction in box 1, as a function of time t as a Scatter with Straight Lines chart (no markers). x_1 should be on the y-axis and t should be on the x-axis. Make sure to label your axes and include units (if needed). Press DELETE in a blank cell about ten times to get a feel for what the graph looks like on average (it should look similar to the original marble game). To see how changing the number of particles changes the simulation, change the value of the total number of particles from $N = 10$ to $N = 500$ with the jump rate constant held fixed at $k = 0.05$ s$^{-1}$. Excel should automatically recalculate the timestep to be $\Delta t = 0.04$ s. You should check that this actually happened in your spreadsheet. Then format the time axis to have a fixed Maximum Bound of $t = 80$ s and format the x_1 axis to have a fixed maximum bound of $x_1 = 0.7$, so that the scale of the graph remains constant between different simulations. Set the parameter for the initial fraction in box 1 to $x_0 = 0$ so that we start out as far from equilibrium as possible. Once you’ve done this, press the DELETE key in a blank cell about ten times to get a feel for what the graph looks like on average. Once again, you should notice that (on average) the graph appears to approach the same equilibrium value (on average).

On the graph add a dotted line representing your best guess for this constant value… one way to do this, or to add any mathematical function to an existing graph, is to add a two column table anywhere that’s convenient on Sheet1 of your spreadsheet. I recommend putting it in columns I and J to separate it from the main simulation table. In this case your theory table should look something like Figure 2.7. The heading “Theory Table” is included to remind us that this table contains theory values. The t (s) column contains the x values we want to plot. The cell containing 80 is produced by a formula =$D2003$, which is a reference to the last value of time t in column D of the spreadsheet. We used a formula so that the value of t will always match the last value of t in the x_1 graph – even when we change N or k and hence Δt. Whenever Δt changes, the duration of the simulation in seconds also changes. The $\langle x_1 \rangle$ column contains the y values (not the x values as you might have expected!). This function is a straight line. As a result, we only need two points in our theory table. However, if we wanted to plot a more complicated function, then we’d need
to have enough \(x \)-values to give a smooth looking \(xy \)-curve using a **Scatter with Straight Lines** chart.

![Figure 2.7 Screenshot from Excel 2016 showing a theory table for equilibrium.](image)

To add the theory table data as a **Scatter with Straight Lines** (no markers) series to the chart. Right-click on the chart (remember Excel calls graphs “charts”) and choose **[Select Data...] > [Add]**. An **Edit Series** window then opens. For the **Series name** enter “equilibrium”; then select **[Series X values:]** and left-click drag on the time \(\text{values} \) in your new table; then select **[Series Y values:]** and left-click drag on the \(\langle x_1 \rangle \text{values} \) in your new table. You will probably need to use **Format Data Series...** to get the desired format with no markers. You should also change the **[Layout]** to include a **Legend**, see the following AWYD.

Q.2.7 For your \(N = 500 \) marble game, press DELETE in a blank cell about ten times to get an idea of what’s going on. When you find a graph that seems representative of what happens on average, **record it**. Remember in Word, you should **[Paste as Picture]** into the Word document.

About what you discovered: checking your graph

Before you check on your answer by looking in the appendix, you should first review your own graph to make sure that it has all the key features and that they make sense. Check your chart title, axis titles (including units if applicable), axis labels and tick marks. Your graph should also include an indication of which line corresponds to the kMC sim and which one corresponds to equilibrium. After you’ve done that, compare your answer with **Figure A2.1**. Your graph need not look identical, but if yours looks significantly different then you should consider whether there is a problem with your graph. ☑

Once it’s working correctly, save a fresh copy of your spreadsheet, e.g. as BPM.Q.2.7 – you’ll need it again in this chapter and in **CHAPTER 3**.

About what you discovered: one sheet is enough

I recommend this procedure of using and saving a separate **file** for each question. That way if you have to go back to a particular question, all you have to do is open the **file** and voila! there it is. In the past, I have had students try to use multiple **sheets** in a single Excel **workbook**. This **did not go well**! It’s very easy to inadvertently make links between the **sheets**, which can be a nightmare to debug …because of the tangled **sheets**! ☑
Q.2.8 Format the \(x_1 \)-axis in your chart to have a fixed maximum of \(x_1 = 1 \) and then sample a range of possible values of \(x_0 \) to see if the equilibrium value of \(x_1 \) depends on the starting value. Try \(x_0 \) values of 0, 0.3, 0.5, 0.8, and 1.0. What can you conclude about the equilibrium value, does it depend on \(x_0 \)? Briefly explain.

Q.2.9 Discussion Question Okay, so now that you’ve confirmed that the simulation always approaches an equilibrium value of \(\langle x_1 \rangle = 0.5 \). Briefly explain why you think the simulation actually does this. Hint: Think about what the algorithm actually does. At each step, each of the marbles is relabeled. Marbles 1 through \(N_1 \) are in box 1 and marbles \(N_1 + 1 \) through \(N \) are in box 2. The algorithm then selects any one of the \(N \) marbles with even probability and moves it to the other box. Why does that result in \(\langle x_1 \rangle = 0.5 \)? Bonus points for a mathematical explanation.

About what you discovered: why \(\frac{1}{2} \)?

From a kinetic point of view, it is relatively easy to see why \(x_1 = 0.5 \) is the most favored value. If the value of \(x_1 \) is less than 0.5, then the number of particles in box 2 is higher. Hence, there’s a greater probability of a particle in box 2 being the next one to jump, which moves \(x_1 \) closer to 0.5 on average. Alternatively, if \(x_1 \) is greater than 0.5, then the number in box 1 is higher, and a particle jumps out of box 1 more often than not, bringing the system back towards \(x_1 = 0.5 \). The only time when there is no bias in the type of jump is when we are at exactly \(x_1 = 0.5 \). BTW There are quite a few ways of explaining why \(\langle x_1 \rangle = 0.5 \), maybe you can come up with a different one for the bonus points in Q.2.9.

Q.2.10 Discussion Question With the jump rate constant set to \(k = 0.05 \text{ s}^{-1} \), set the initial fraction of particles in box 1 to \(x_0 = 0 \) with fixed scale axes having a maximum of 0.7 for \(x_1 \) and 80 s for \(t \). Then vary the number of marbles in the system in the range \(N = 100 \) to \(N = 1000 \) and compare the average shapes of the kMC curves for different numbers of marbles. Check each number \(N \) by pressing DELETE in a blank cell about ten times and visually compare the general shapes of the graphs. Briefly summarize how the following properties change with the number of marbles in the game \(N \):

(a) the jaggedness of the graph;
(b) the average general shape of the graph (ignore changes in jaggedness); and
(c) the average time taken to reach equilibrium.

(d) By discussing the mean residence time \(\tau \), explain your answer in (c).

About what you discovered: effect of number of marbles on kinetics

With fixed \(x_1 \) and \(t \) axes, you should have noticed that while the jaggedness (variability) of the curves increases with a decreasing number of marbles, the basic shape of the average curve does not depend on the number of marbles. It’s important that you consider what happens on average when you look at the curves, so be sure to hit DELETE a bunch of times and look for what happens on average.
In the physical system that we’re simulating, the particles are jiggled around and eventually they end up jumping to the other box because of their random thermal motion. The rate of this jiggling (and hence the jump rate k) does not depend on how many particles there are in solution. This means that the mean residence time $\tau = 1/k$ does not depend on how many particles there are in total. This means that every single particle leaves the box at the same rate as every other molecule. This particle independence is a simple idea, but it’s not like many everyday situations. For example, exiting the front door from the rear of an airplane can take much longer if the plane is full. The distinction in the marble game is that the jump rate k is independent of how many marbles there are in the box, whereas on a plane you can’t even start to leave until all those people at the front have deplaned!

Q.2.11 With $x_0 = 0$ and the same fixed axes as in Q.2.10, change N to be twenty thousand particles. One way to enter this number is to type 2e4 into the spreadsheet. Excel recognizes this as the number 2×10^4.

(a) Briefly describe what the graph looks like.

(b) In light of what you discovered in Q.2.10, briefly explain why the graph looks the way it does.

Hint: The time axis has numbers on it, what are they telling you? How much time elapses in the 2000 Steps that you can see in your graph? In your answer, be careful to distinguish between simulation Steps and the physical time t – they are not the same thing!

About what you discovered: Microsoft messes with your stuff!

When you enter 2e4 into the spreadsheet, Excel recognized this as the number 2×10^4. Excel also automatically converted it into the Excel standard format for scientific numbers and displayed it as 2.00E+04 because Excel assumed that this was what you wanted. If you want to change it back to the default General format you’ll need to go to the [Home] > [Number] group and change [Scientific] to [General], or you can right click on the cell and select [Format Cells…] > [Number] > [General]. BTW The default Scientific format displays only two decimal places and rounds the number before displaying it. This can sometimes cause problems, to see why, type 20049 into the cell when it’s in the scientific format. Excel displays 2.00E+04 – which is off by nearly 50. However, it’s not quite as bad as it seems, if you left-click in the cell and then look in the Formula bar, you’ll see that Excel is actually storing the exact number you typed in. As a result, seeing is not always-believing in Excel. You may run across other examples of this type of thing as we continue to work with Excel. Sometimes a number will not fit in its cell because the cell is too narrow and you’ll see something like ### displayed in the cell. If this happens, click on the cell and look in the Formula bar. If you widen the cell, you should be able to correctly see the number stored there.

With $x_0 = 0$ and $N = 20\ 000$, your graph looks truncated. To fix that, [Reset] the Maximum for the time- and x_1-axes to Auto and delete the equilibrium $\langle x_1 \rangle$ line from the graph.
About what you discovered: seeing what's in graphs clearly

The problem of an improperly scaled graph that we just fixed is one that comes up quite often when we’re working with Excel, or any other graphing software. It is always up to you to adjust the graph axes so that you can see the data in a manner that you think is appropriate.

Q.2.12 (a) *Briefly explain* why the rescaled graph looks like a straight line starting at zero and pointing up to the right.
(b) *Describe mathematically* how the slope (= rise/run) is related to the jump rate constant k.
(c) Does this graph represent the equilibrium behavior of the system? Look carefully at the x_1-axis. Are we even close to the equilibrium value of $\langle x_1 \rangle = 0.5$?

About what you discovered: large systems

What you just discovered applies to nearly all simulations. Let’s see how it applies to one of the most important challenge problems in biophysics – protein folding. With the advent of genomics, new DNA sequences are discovered every day that code for the amino acid chains that make up protein molecules. For the protein to be biologically active, it must fold up into a useful shape. In principle, this folded structure can be predicted from the amino acid sequence using advanced computer simulations of proteins. However, just like in our marble game simulation, the amount of computer time required to reach equilibrium increases with the number of atoms N. The result is that this approach is not viable for most proteins because they are just too big for computers to simulate long enough to get to the equilibrium folded structure …at least for the moment. An additional complication is that sometimes other proteins (chaperones) aid in the folding process.

2.4 Approach to equilibrium – kinetics and dependence on jump rate constant k

Q.2.13 Open the copy of the spreadsheet you saved in Q.2.7 that has *fixed axis maxima* of $x_1 = 0.7$ and $t = 80$ s. Make sure that $x_0 = 0$ and set the number of marbles to $N = 250$. Then sample different values of k to see the effect of this parameter on the simulation. In particular, try values of $k = 0.1$ s$^{-1}$, $k = 0.05$ s$^{-1}$ and $k = 0.025$ s$^{-1}$. Don’t forget to hit DELETE in a blank cell a few times to see what happens on average.
(a) As you decrease the value of k, *briefly describe* the change you see in the graph.
(b) *Briefly describe* what’s wrong with the graph when you make $k = 0.2$ s$^{-1}$ or $k = 0.01$ s$^{-1}$?

Q.2.14 To correct the problem you discovered in Q.2.13(b)&(c), *[Reset]* the Maximum for the time-axis to *Auto*. Then sample possible values of k to see if the overall shape of the x_1 vs. t curve depends on the jump rate constant k. Try values in the range $k = 1 \times 10^{-9}$ s$^{-1}$ to $k = 1 \times 10^{9}$ s$^{-1}$.
Hint: the first number can be entered as 1e-9 and the second one as 1e9.
(a) What can you conclude about the overall shape of the curve, does it depend on the value of \(k \)? *Briefly explain.*

(b) What does change? *Briefly explain.*

(c) With \(N = 250 \), calculate the length of time (duration) of a 2000-step sim when \(k = 1 \times 10^{-9} \text{ s}^{-1} \), \(k = 1 \times 10^9 \text{ s}^{-1} \) and \(k = 0.05 \text{ s}^{-1} \).

Q.2.15 Let’s use the symbol \(t_{\text{sim}} \) for the duration of the simulation in seconds, e.g. \(t_{\text{sim}} = 80 \text{ s} \) in Figure A2.1, and \(N_{\text{steps}} \) for the duration of the sim in Steps, e.g. \(N_{\text{steps}} = 2000 \) in the kMC sim of Figure A2.1.

(a) *Write out* an equation for the sim duration \(t_{\text{sim}} \) in terms of the timestep \(\Delta t \).

Hint: If one step takes \(\Delta t \), how long do \(N_{\text{steps}} = 2000 \) steps take?

(b) Use the equation you derived in part (a) to calculate the duration of a 2000-step sim with \(N = 500 \) when \(k = 1 \times 10^{-9} \text{ s}^{-1} \), \(k = 1 \times 10^9 \text{ s}^{-1} \) and \(k = 0.05 \text{ s}^{-1} \).

About what you discovered: approach to equilibrium

What you should have noticed in Q.2.14 is that the shape of the curve doesn’t seem to depend on the value of \(k \). The autoscaling feature may squish or stretch the graph in the time direction a little, but taking this into account, you should have been able to convince yourself that the basic shape does not change. One thing that does change *dramatically* is the scale of the time axis, and hence the time required to reach equilibrium. The smallest rate constant corresponds to jumps that take *decades* to happen on average, e.g. removing heavy metals like lead from bone. The largest rate constants are for the speed demons of molecular transport: *aquaporins* and *ion channels*, which are membrane proteins that transport water and ions respectively, on a timescale of \(1 \text{−} 100 \text{ nanoseconds} \). In Q.2.15 you should have discovered that the physical duration of the simulation is given by

\[
t_{\text{sim}} = N_{\text{steps}} \Delta t = \frac{N_{\text{steps}}}{Nk}
\]

Q.2.16 **Discussion Question** Using what you discovered in Q.2.14 and Q.2.15, *briefly summarize* in your own words the effects of the jump rate constant \(k \) on each of the following:

(a) the number of simulation steps required to reach equilibrium

(b) the amount of physical time required to reach equilibrium

(c) the duration of the simulation \(t_{\text{sim}} \) for a fixed number of simulation steps \(N_{\text{steps}} \).

Q.2.17 **Discussion Question** In your own words, *briefly summarize* the effects of the number of particles \(N \) on each of the following:

(a) the number of simulation steps required to reach equilibrium

(b) the amount of physical time required to reach equilibrium

(c) the duration of the simulation \(t_{\text{sim}} \) for a fixed number of simulation steps \(N_{\text{steps}} \).
Physiological applications

The marble game simulation we’ve been investigating is much more than the simple children’s game we studied at the beginning of Chapter 1. As we discussed in Section 1.5 of Chapter 1, the marble game can be used to model (and hence understand) a wide variety of biological systems. Similar metabolic processes to oxygen uptake, carbon dioxide removal, and glucose transport occur at membranes throughout the body with differing levels of complexity. The two-box model based on the marble game provides a jumping off point for our study of these biophysical systems. As you’ll see, we can modify this two-box model to investigate transport of almost any molecule or ion in the body to model a variety of metabolic and transport processes in physiology. The limitation of this approach is that underlying mechanism for transport must be a random process. This usually means passive processes and excludes active transport that requires the use of stored chemical energy, e.g. in the form of ATP molecules. Also excluded are convective flows – such as breathing or blood flow. These can be distinguished from the marble game because all the molecules move together in a concerted manner – the marbles don’t jump randomly between stationary boxes – the boxes are moving!

Q.2.18 DISCUSSION QUESTION List five physiological situations that you think might be modeled using the marble game model. See if you can come up with examples that you think are interesting, or that you think are important. Describe the system by describing:

(a) The boxes. I.e. do they correspond to a tiny portion of cytoplasm, a whole cell, an organ or the whole body?

(b) The identity of the particles. I.e. what molecules correspond to the marbles? Be creative; see if you can come up with some interesting and important examples where molecules move from place to place randomly.

Hint: Physiology can be described in terms of systems that exchange material with the external environment: respiratory, digestive, urinary, reproductive and integumentary (skin). There are also internal systems that coordinate or perform functions within the body: musculoskeletal, circulatory, immune, nervous and endocrine systems. All of these systems include numerous passive processes occurring across epithelial surfaces that might be modeled by the marble game.

2.5 Eliminating TYLENOL® from the body

In the original marble game sim the rate of events (jumps) didn’t change during the simulation. The rate of jumping didn’t depend on which box a molecule was in, and the total number of molecules did not change. Hence, the total rate of events \(\lambda \) was a constant

\[
\lambda = Nk
\]

(2.12)

in the original marble game sim. In other sims, the total rate of events might not be constant. For these variable timestep simulations, \(\lambda \) becomes a system variable because it changes during the sim. This implies that the timestep \(\Delta t \) is also a variable and is given by
\[\Delta t = \frac{1}{\lambda} \]

(2.13)

and \(\lambda \) and \(\Delta t \) change from step to step. The simplest possible example of this is when one of the jump rates is zero. This occurs in a simple model of how drugs are eliminated from your body.

Marble game model of drug elimination

In this model system, the rate constant for jumps from box 1 \(\rightarrow \) 2 is \(k_1 = k_e \). We’ll use the subscript \(e \) to remind us that the rate constant is for elimination. The rate constant for jumps from box 2 \(\rightarrow \) 1 is \(k_2 = 0 \), as jumps from box 2 back into box 1 can’t happen. I.e. once drug molecules get into the bladder they can’t get back into the rest of the body. In this case, the total rate of jumps is

\[\lambda = N_1 k_e \]

(2.14)

The specific drug we’ll consider is the drug known as acetaminophen in the USA, e.g. the Tylenol® brand. Elsewhere it’s known as paracetamol, e.g. the Panadol® brand.

Box 2 now represents the bladder and box 1 represents the rest of the body. This is a very simplified model! There’s clearly much more going on than a simple “jump” of a molecule through the kidneys and ureters into the bladder. For example, acetaminophen molecules are usually modified by the liver before being eliminated. We’ll leave the discussion of the physiological implications of the model to Chapter 4. For the time being, we’ll focus on discovering how this idealized model system behaves.

Q.2.19 Show that equation (2.13) reduces to equation (2.2) in the original marble game.

About what you discovered: the purpose of “Show that...” problems

Questions that include show that or derive are asking you to write out a math answer to the problem. In this case, you need to algebraically combine the general equation (2.13) for \(\Delta t \) with the specific equation (2.12) for \(\lambda \) in the original marble game sim. According to the question, the answer should be equation (2.2). The purpose of this question is to help you discover the relationship between the more general way of talking about kMC sims in equation (2.13) and the original marble game, equation (2.2). To communicate that you really do understand how the connection is made, you should carefully write out your answer including all the elementary
algebraic steps required to get from the starting point(s) to the desired equation. In this case you could write

$$\Delta t = \frac{1}{\lambda} \quad \text{and} \quad \lambda = Nk \quad \Rightarrow \quad \Delta t = \frac{1}{Nk}$$

or in words

Substituting equation (2.12) into (2.13) gives \(\Delta t = \frac{1}{Nk} \), which is equation (2.2).

The bottom line here is that you need to make it clear in your answer that you really do understand how equation (2.13) is a consequence of combining the relationships in equations (2.2) and (2.12).

Nothing random!

There is only one kind of event in this kMC sim – the jump of a Tylenol molecule from box 1 \(\rightarrow \) 2. As a result, we always know what will happen next – a molecule will jump from box 1 \(\rightarrow \) 2, making \(N_1 \) decrease by one. We also know from equation (2.13) that the average time until that jump is \(\Delta t = 1/(N_1 k_e) \). This means that our kMC simulation is completely deterministic! Meaning that there is no randomness in this Monte Carlo simulation at all!

Q.2.20 (a) Using equations (2.14) and (2.13), write out a complete algorithm in style a similar to Figure 2.2 (including unit checks) for a kMC simulation of Tylenol elimination with an elimination rate constant of \(k_e = 0.31 \text{ h}^{-1} \). Start with \(N_0 = 100 \) Tylenol molecules box 1.

(b) **Calculate** steps 0 through 4 of your algorithm by hand, i.e. using a calculator. Write your answer in the form of an output table.

Really long hint: You should do parts (a) and (b) of this question together. Your answer to part (b) will help you figure out what to write in part (a). For example Step 0 should describe how to fill in row 0 of the table and Step 1 should describe how to fill in row 1. Your sim algorithm should include the following parameters

- \(N_0 = 100 \) Number of Tylenol molecules in the body at time 0
- \(k_e \) (h\(^{-1}\)) = 0.31 Rate constant for elimination (per hour)

…and the following variables

- \(\lambda \) (h\(^{-1}\)) Average rate of jumps (per hour)
- \(\Delta t \) (h) Timestep (in hours) **Note:** \(\Delta t \) is a variable in this algorithm
- \(t \) (h) Time since the dose was taken (in hours)
- \(N_1 \) Number of Tylenol molecules in the body (box 1)

When you’re done, your answer for steps 0 through 2 should look exactly like those shown in Table 2.8. **Note:** No time elapses during Step 0.
Table 2.8 Output table for the marble game kMC algorithm of drug elimination

<table>
<thead>
<tr>
<th>Step</th>
<th>(\lambda) (h(^{-1}))</th>
<th>(\Delta t) (h)</th>
<th>(t) (h)</th>
<th>(N_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>31</td>
<td>0.032258</td>
<td>0.032258</td>
<td>99</td>
</tr>
<tr>
<td>2</td>
<td>30.69</td>
<td>0.032584</td>
<td>0.064842</td>
<td>98</td>
</tr>
</tbody>
</table>

Even if you think you got the algorithm correct, check out the following AWYD (after you’re done)…

About what you discovered: If you’re having trouble…

If you’re having trouble writing out the algorithm, try answering the following questions first.

1. If there are \(N_1^{\text{old}}\) Tylenol molecules in box 1, at what rate \(\lambda^{\text{new}}\) do they jump to box 2?
2. If the total rate of events is \(\lambda^{\text{new}}\), what is the equation for \(\Delta t^{\text{new}}\) the timestep associated with the current jump?
3. If there are \(N_1^{\text{old}}\) Tylenol molecules in box 1 in the previous step, what is the equation for the number \(N_1^{\text{new}}\) at the end of the current step of the sim?

In this kMC simulation, \(\lambda\) and \(\Delta t\) are variables. The overall rate \(\lambda^{\text{new}}\) at which molecules jump from box 1 \(\rightarrow\) 2 in the current step is \(\lambda^{\text{new}} = k_e \cdot N_1^{\text{old}}\) and the timestep for the current jump is \(\Delta t^{\text{new}} = 1/\lambda^{\text{new}}\). The new value of time is \(t^{\text{new}} = t^{\text{old}} + \Delta t^{\text{new}}\), and the new number of molecules is always \(N_1^{\text{new}} = N_1^{\text{old}} - 1\) as a single molecule always leaves box 1 during each step of this sim.

Q.2.21 Implement your algorithm in a blank spreadsheet and check that you get exactly the same results that you calculated by hand in Q.2.20(b). Extend your sim in time and plot a graph of the number of molecules in the body versus time, as a Scatter with only Markers series with \(N_1\) on the y-axis and \(t\) on the x-axis, until you reach \(N_1 = 0\). You should then Format Data Series… > Series Options > Marker > Fill to No fill. That will let you see the close-together markers better. Record your graph.

Q.2.22

(a) By inspecting the numbers in your spreadsheet, calculate how long (in hours) it takes for the number of molecules to go from 100 \(\rightarrow\) 50?

(b) Calculate how long it takes for the number of molecules to go from 50 \(\rightarrow\) 25?

(c) Calculate the average of your answers to parts (a) and (b).

Hint: Use the sim numbers. In addition, you should remember that numerical answers must always include units.

As we’ll discover in **CHAPTER 4**, pharmacokinetic theory predicts that our **model system** should have an exponential decay for the amount of Tylenol as a function time.
\[N_1 = N_0 e^{-k_e t} \] (2.15)

![Figure 2.9 Excel 2016 screenshot of a theory table for plotting equation (2.15). \(\delta t_{\text{theory}} \) is a parameter for this table.](image)

Table 2.9 Instructions for a **theory table** to plot a theory curve using equation (2.15)

<table>
<thead>
<tr>
<th>Rows 1, 2, 3…</th>
<th>Comment or explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t^{\text{new}} = t^{\text{old}} + \delta t_{\text{theory}})</td>
<td>increment time by (\delta t_{\text{theory}})</td>
</tr>
<tr>
<td>(N_1^{\text{new}} = N_0 \times \text{EXP}(-k_e \times t^{\text{new}}))</td>
<td>calculate (N_1^{\text{new}}) using equation (2.15)</td>
</tr>
</tbody>
</table>

Add a two-column **theory table** to your spreadsheet (see Figure 2.9). This table should have a heading “Theory Table”. This heading will distinguish the \(t \) and \(N_1 \) in this table from those listed in the **simulation table**. Under the table heading there should be one column for time \(t \) (h) and another column for \(N_1 \). The entries in the first row should be zero and \(N_0 \). The following rows should be calculated using the instructions shown in Table 2.9, where \(\delta t_{\text{theory}} = 5 \) h is a parameter for the theory table that specifies the spacing between times in the theory table. (We’ve used the lowercase Greek letter \(\delta \) (small delta) to distinguish it from the sim uppercase \(\Delta t \) (big delta \(t \)) and because – as we’ll discover – this \(\delta t \) needs to be “small”.) In Figure 2.9, I’ve put \(\delta t_{\text{theory}} \) next to the table. In each row of the theory table, a theoretical value of \(N_1 \) is calculated using equation (2.15). Note that \text{EXP()} is the Excel function for the exponential function \(e^x \). Also note, we remembered to use a * for multiplications in Excel.

Q.2.23 Add a **Scatter with Straight Lines** series to your graph for the theory using a value of \(\delta t_{\text{theory}} = 5 \) h and a time axis maximum of 20 h.

(a) **Briefly explain** what is wrong with your theory series.
(b) Change the theory series to the banned style **Scatter with Smooth Lines.** **Briefly explain** why this **Smooth Lines** curve is extremely misleading.
(c) Change the theory series back to **Scatter with Straight Lines** and decrease \(\delta t_{\text{theory}} \) until the theory curve looks like a smooth function that doesn’t change when you decrease \(\delta t_{\text{theory}} \) by a factor of ten. **Record** the value of \(\delta t_{\text{theory}} \) that you found.

Hint: You’ll probably need to extend the **series** to show all the new points.
(d) **Record your graph.**
About what you discovered: using Excel to plot functions

Figure 2.10 shows what your answer to Q.2.23(d) should look like. You should have noticed that the kMC sim actually reaches zero Tylenol molecules at a finite time of about 17 hours, whereas the theory still has about half a molecule left at this time. Which one is correct?

In the my graph, I also added a dotted line series to show the first two half-lives, using the numbers from Q.2.22. I did that by adding a half-life table to the spreadsheet (see Figure 2.11). I collected the spreadsheet data for the graph by hand. To make the stepped shape you need to have two staggered points for each \(t \) and \(N_1 \). The first two rows make the first vertical drop at time \(t = 0 \), the second and third rows make the horizontal tread of the first step and the third and fourth rows make the second vertical drop and the fourth and fifth rows make the second horizontal tread. The take-home message is that using a two column table of data you can make any shape you like in Excel – see Q.2.24.

![Elimination of TYLENOL](image)

Figure 2.10 Excel 2016 chart of drug elimination. Diamonds show kMC results for an \(N_0 = 100 \) sim, the solid line shows the pharmacokinetic theory prediction from equation (2.15) and the dotted line indicates the first two half-lives.

Half-life table

<table>
<thead>
<tr>
<th>(t) (h)</th>
<th>(N_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>2.21991</td>
<td>50</td>
</tr>
<tr>
<td>2.21991</td>
<td>25</td>
</tr>
<tr>
<td>4.423933</td>
<td>25</td>
</tr>
</tbody>
</table>

Figure 2.11 Excel 2016 screenshot of a half-life table for plotting half-lives as a step graph.
Q.2.24 You can use the method discussed in the previous AWYD to plot any mathematical function in Excel using an X Y (Scatter) chart. You can also use it to make fun shapes. With just two series, I made the square “have a nice day” smiley face shown in Figure 2.12. Open a blank Excel spreadsheet and using a chart, draw a smiley face or another line drawing and record your artwork.

Figure 2.12 Excel 2016 chart made using two series. The eyes were made with a “Scatter with only Markers” series. The rest of the figure was made with a single “Scatter with Straight Lines” series. FYI if you leave a blank row in the table you get a gap in the straight-line chart. Inspired by the Bon Jovi album “Have a Nice Day.”

Q.2.25 Change the y-axis of your graph to a log scale, and set the maximum on the time axis to 8 hours. Add a step graph for the half-lives you discovered in Q.2.22 and record your semi-log graph.

Hint: In the following AWYD there’s a sample graph in the desired format. To display your graph in this format, you’ll need to select the Format Axis… > Axis Options for the \(N_1 \)-axis and check the box for Logarithmic scale.

About what you discovered: exponential decay and half-lives

Figure 2.13 Excel 2016 chart with clinical data from tylenolprofessional.com. Note that the experimental data are discrete and hence are plotted as only Markers. The theory curve represents a continuous function that is plotted as Straight Lines. Marble game kMC data are also discrete and are plotted as only Markers.

Your graph for Q.2.25 should look something like Figure 2.13, but you weren’t asked to plot the experimental data for TYLENOL liquid or caplets and you were only asked for two half-lives. As
shown in the graph legend, the blue circles represent the kMC results, the solid orange line is the theoretical curve, equation (2.15), and the grey dotted lines indicate the times required for the number of molecules to halve and then halve again and again. The experimental data and kMC results are shown as only Markers to make it clear that they are discrete data. As you can see, the kMC simulation (circles) and the theory (solid line) are almost identical.

My graph also includes some experimental (clinical) data points derived from the mean blood plasma concentrations of acetaminophen in 24 male subjects following oral administration of 1000 mg of acetaminophen dosed as either 30 mL of Extra Strength TYLENOL Liquid or as two Extra Strength TYLENOL Caplets (tylenolprofessional.com). The clinical data appear to match the model predictions fairly well after about an hour, indicating that our model provides a reasonable explanation of Tylenol elimination after the first hour. You should also note that the half-life steps appear to be uniform (the same size) in this semi-log plot.

Q.2.26 Compare your answers to Q.2.22(a) and Q.2.22(b).

Hint: The following AWYD explains how to compare numbers quantitatively.

About what you discovered: talking numbers

Percentage comparisons

Q.2.26 asks you to compare two numerical values. This is an important part of technical discussions. As a scientist, engineer, or medical professional, you should be able to talk about numerical comparisons in a clear and concise manner. Your answers to Q.2.22(a) and Q.2.22(b) should have been 2.2199 h for the first half-life and 2.2040 h for the second half-life, respectively. You could compare these numbers by simply reporting them both as I just did, but that leaves the comparison and its significance up to the reader. A good answer to Q.2.26 is:

A.2.26 The two half-lives are almost the same. The second half-life is 0.7% less than the first half-life.

So how did I calculate the 0.7%? Technically this is a percent change. The formula for a percent change from \(a\) to \(b\) is

\[
\Delta\% = \frac{b - a}{a} \left(\frac{100\%}{1}\right)
\]

(2.16)

For example, imagine that a major brand of aspirin costs \(a = \$10.00\) and a bottle of generic aspirin costs \(b = \$7.00\). Most people have no trouble in calculating that there is a 30.0% savings for the generic. Check for yourself that equation (2.16) gives this answer: \(\Delta\% = -30.0\%\). **Note:** The minus sign means that the generic is 30.0% less than the major brand. Hence, there is a 30.0% decrease (percent decrease or savings) switching to the generic. You should also notice that the term in parentheses in equation (2.16) is simply a unit conversion, one over one, as 100% = 1.
The order of comparison is important in equation (2.16). For example, if we use equation (2.16) to calculate the percent increase when switching from the generic to the major brand, we get +42.9%. The reason for the larger magnitude (42.9% \textit{vs.} 30.0%) is because of the smaller reference value ($7.00 \textit{vs.} $10.00). To avoid any ambiguity, the language of your answer should make clear which price, the generic or the brand name, is being used as the reference value a, see A.2.26 above.

Equation (2.16) is also used in science when we want to compare an observed value o from a simulation or an experiment with theoretical or expected value e. In this case the equation becomes

$$\Delta\% = \frac{o - e}{e} \left(\frac{100\%}{1}\right)$$

and the result is often called the percent error. The word “error” in this comparison implies that we are comparing an observed value with an expected value. However, the word “error” is unfortunate. The “error” can be non-zero even when there was no mistake made in the experiment or the simulation.

On the internet, and in some textbooks, you will also find a comparison that is unfortunately called percent difference (or percentage difference).

$$\%\text{Diff} = \frac{|a - b|}{(a + b)/2} \left(\frac{100\%}{1}\right)$$

This equation can be used to compare two experimental (or simulation) values, but the reference value that is used is the average $(a + b)/2$.

To avoid confusion with this quantity in your answers to “\textit{compare}” questions in this book, or in your later technical writing, I recommend that you always write your answer in the form of a complete sentence that explicitly states the reference value used for the comparison – see sample answer A.2.26 above.

Factor comparisons

Percentage comparisons really only make sense if the percentages are less than about 100%. If the differences are large, it makes more sense to use a factor to compare the two values. For example, if the generic aspirin costs $3.00 and the major brand is $9.00, then we can say that the major brand is triple (3.00-times or a factor of 3.00 larger than) the price of the generic. If the generic costs $0.90, then the major brand is 10-times more expensive (or the generic is one-tenth of the price of the major brand).

\[Q.2.27\] Briefly discuss how your estimate for the half-life of Tylenol in Q.2.22(c) compares with the published values of the half-life of Tylenol for acetaminophen and
paracetamol, i.e. look up the half-life of acetaminophen and paracetamol on the web or in a drug fact book).

Hint: Your answer to this type of question should quantitatively compare your value with the literature value. As always you should cite references. If you find a range of published values, state how your value compares with the range, e.g. does it fall within the range?

An alternate way to implement the marble game model of drug elimination in a kMC sim is to modify the original marble game by changing the instruction that changes N_1 in $Step \, 1, 2, 3, \ldots$ to

$$N_1^{\text{new}} = \text{IF}(r^{\text{new}} \leq N_1^{\text{old}}, N_1^{\text{old}} - 1, N_1^{\text{old}}) \quad (2.19)$$

in which the second choice in the IF is changed from $N_1^{\text{old}} + 1$ to N_1^{old}. I.e. N_1^{new} never increases.

Open the copy of the spreadsheet you saved in Q.2.7, [Reset] the x_1-axis to Auto, remove the equilibrium line, set the rate constant to be $0.31 \, h^{-1}$, change the rate constant symbol from k to k_e for elimination, set the initial fraction in box 1 to $x_0 = 1$, set the total number of marbles to $N = 100$ and modify the instructions for N_1 according to equation (2.19). You’ll also need to change the units for time from (s) to (h) in the spreadsheet headings and in the graph. Set the time axis **Maximum** to 20 h. Then add a **theory table** to the spreadsheet for the theoretical prediction of $x_1 = x_0 \exp(-k_e t)$ using the techniques you learned in **SECTION 2.3** and plot the theory as a dotted line together with the kMC values of x_1 as a function of time. Press DELETE in a blank cell a number of times to get an idea of what the sim does on average.

Q.2.28 DISCUSSION QUESTION (a) Explain in words what the new kMC simulation is actually doing and explain where the randomness comes from.

Hint: A good answer will compare this simulation with the kMC sim in Q.2.23.

(b) With $N = 100$, and the x_1-axis set to **Auto**, change the initial fraction in box 1 to $x_0 = 0.1$. Press DELETE in a blank cell at least ten times and record a representative graph.

(c) In your graph answer to part (b), 620 kMC Steps corresponds to 20 h, explain why there are level portions in the graph followed by abrupt falls in x_1.

(d) Sample values of N in the range from $N = 10$ to $N = 500$ and explain how (and why) the graph depends on N.

(e) Set $x_0 = 1$ and sample values of N in the range from $N = 10$ to $N = 500$. Explain why the graphs look similar to part (d).

In **CHAPTER K** we’ll investigate the kinetics of kMC simulations in more detail and learn even more about the real systems that they simulate.

Conclusions – about what you discovered

Congratulations! If you made it here, then you’ve successfully learned how to write an algorithm, test it and then implement it in a spreadsheet. An algorithm is useful for formalizing any procedure and then communicating it to others. (I even found one on the internet for cardiac rehabilitation.)
Algorithms are also a key step in writing more complex computer applications, e.g. in genomics, bioinformatics or engineering. Algorithm development is one of the most important skills that you’ll learn in this book! If you can write an algorithm, you can then get a spreadsheet to do the number crunching for you. BTW you should note that questions like Q.2.2-Q.2.4 and Q.2.20 make good test questions, because they test your ability to write and understand algorithms.

In Section 2.1, we learned how to write an algorithm and test it by hand. We wrote an algorithm for the original marble game and identified parameters and variables. Parameters like \(k, N \) and \(\Delta t \) do not change during the marble game sim whereas variables such as \(t, r, N_1, \) and \(x_1 \) do change, usually at every step. As we learned in Section 2.1, it’s best to (b) test the algorithm by filling in an output table while you’re (a) writing it. It’s also important to remember that whether something is a parameter or variable depends on the sim. For example, in the TYLENOL sim, \(\Delta t \) became a variable because it changed at each step of the sim.

In Section 2.2 we learned how to implement our pretested algorithm in a spreadsheet. Parameters all go in column A of the spreadsheet and are referred to using absolute addressing in the rest of the spreadsheet. Each of the variables gets its own column in the spreadsheet with each row representing the current step. As we discovered, writing spreadsheets does not always go well the first time. If you do run into problems, you’ll have to debug the spreadsheet using the Formula Bar and Formula Auditing Mode and carefully compare what the spreadsheet is actually doing with what you planned in your algorithm and then tested in your output table.

In Section 2.3 we discovered how the sim approaches equilibrium, and how that approach doesn’t seem to depend on the number of particles \(N \), i.e. the average shape of the \(N_1 \) vs. \(t \) curve does not depend on the number of marbles. The physical explanation is that the jiggling due to Brownian motion, and hence the rate of jumps, does not depend on how many particles there are in a box. As a result, the mean residence time \(\tau \), the average time between jumps of a specific molecule, does not depend on how many there are in total. This means that the marbles move independently of each other, which is why the residence time does not depend on how many marbles there are in the box. The behavior of single molecules is now an extremely active area of biophysics. Sometimes the variability of this behavior is critical to understanding how small systems behave. We will return to this fascinating topic again in later chapters.

In Section 2.4 we learned that parameters make the simulation real. The rate constants \(k = 40 \text{ s}^{-1} \) for CO\(_2\) removal and \(k_e = 0.31 \text{ h}^{-1} \) for TYLENOL elimination were chosen to match the physiological systems we were considering. For physical systems, the jump rate constant \(k \) is the parameter that determines the amount of physical time required to reach equilibrium. As we learned, this time could range from nanoseconds up to decades depending on the system represented by the simulation. This equilibration time does not depend on \(N \). However, when we implement the system in a kMC sim, the amount of physical time represented by the kMC sim does depend on \(N \) – see equation (2.11). These two effects should not be confused. The physical time that elapses is not determined solely by the number of steps in the sim \(N_{\text{steps}} \), it
also depends on the rate constant \(k \) and number of marbles \(N \). **Hint:** For this discussion to make sense – you have to look at equation (2.11).

Finally, in **SECTION 2.5** we generalized the marble game model to allow for the jump rates to be different. By setting \(k_2 = 0 \), we developed an extremely simple model of how drugs are eliminated from the body. The concept of a drug half-life originates from this model, as it predicts an exponential decrease in the amount of drug in the body, so that the drug half-life doesn’t depend on the dose. The half-life of a drug is an important factor in determining the dosage frequency of drugs. In **CHAPTER 4** we’ll investigate drug elimination in more detail and discover how to fit the model to experimental data and obtain the value of \(k_e \) that matches the real situation, e.g. the value of \(k_e = 0.31 \text{ h}^{-1} \) used in Figure 2.13. Our marble game model of drug elimination is the simplest possible model. We are ignoring nearly all of the fantastically complicated intricacies of human physiology, but the result is an excellent **first-order approximation** (starting explanation) for the elimination of the drug TYLENOL.

As you’ve probably noticed already, reading this book is not like reading pulp fiction! You can’t just skim read it and expect to get the main plot details. **Active reading** is required! As you read, you should be constantly asking yourself: What are we doing? Why are we doing it? Does this make sense? The questions are included in the main body of the text to help you discover what the models predict and what they imply. You should always try to work through the question before reading any related AWYD. If you discover things for yourself… you’ll understand them much better! If you have a **problem** with any of the instructions, the most likely reason is that you missed something that was explained earlier. **Solution:** Check out any related AWYD and then go back and reread the relevant sections. Pay particular attention to definitions of parameters and variables and the explanations of the equations in which they appear. Whenever you read a symbol like \(k_e \), it should be pronounced “the drug elimination rate constant”. If a thing is given a symbol, then it must be important! Make sure you recall what a symbol stands for when you read it.

We also learned how to use Excel to plot a theoretical curve using any mathematical function or any other numerical data. The process is very simple and is always the same – make a two column **table** where you enter the \(X \) and \(Y \) you want to plot.

In this chapter we learned how to use algorithms to develop quantitative models and implement them in a spreadsheet. The most fundamental parameter in the quantitative marble game model is the jump rate constant \(k \). In addition to telling us how frequently molecules jump between the boxes, it also determines the mean residence time \(\tau \) of an individual molecule and the size of the simulation timestep \(\Delta t \). By modifying the algorithm for the original marble game in two different ways we were able to develop simple kMC models of drug elimination and discovered that they predict the exponential decay and half-life that you’ll find in traditional pharmacokinetic theory.

Reading and writing algorithms is an essential component of our scientific literacy. We’ll be using algorithms extensively in later chapters.
Summary: Algorithms and pain relief

Key computational concepts

Algorithm

- An **algorithm** is a human-readable recipe for implementing the model in a spreadsheet. It is a list of ingredients separated into **parameters** and **variables**; and a list of instruction **steps**.
- **Parameters** – go in column A and don’t change during the sim. If you change a parameter the whole sim changes… Don’t forget to include **units**!
- **Variables** – have a **column** of their own with a heading including the variable name and **units**! Variables usually change at each step. Don’t forget to include **units**!
- **Step 0** – a set of **instructions** for the **initial values** of the variables (first row)
- **Step 1** – a set of instructions for how the variables change in later **rows**
- **old & new** – indicate **variables** in previous and current step as **old** and **new**
Addressing modes (press F4)

- **Relative addressing** e.g. \(=C3+1\) keeps the relationship the same after a copy, e.g. *add one to the cell above*.
- **Absolute addressing** e.g. \(+A9\) always refers to the *same cell* after a copy i.e. *always add cell A9*.

Debugging (press CTRL+`)

- When you see #DIV/0, #VALUE! or #NUM! in your spreadsheet, something has gone wrong (probably with the addressing during a copy). To check an individual cell, left-click in the cell and then in the Function bar. To check the entire spreadsheet use **Formula Auditing Mode** (CTRL+`). If you see ### in a cell, the contents are too wide to be displayed properly – widen the column by double-clicking on the line in the heading.
- Enter large numbers in Excel as 2e4 for \(2 \times 10^4\).

Plotting functions or shapes in Excel

- By entering a **theory table** in your spreadsheet you can plot any shape you like in an Excel **Scatter with Straight Lines** chart. To make a mathematical function look smooth you need to make \(\delta x\) small enough (\(\delta x = 1\) is too big in the \(y = \sin(x)\) example shown in Figure 2.14).

![Plotting a theory table for \(y = \sin(x)\)](image)

Figure 2.14 Excel 2016 chart plotting a theory table for the function \(y = \sin(x)\). The value of \(\delta x = 0.5\) used in the graph is too big and should be reduced to provide a smooth curve.
Key physiology concepts

Kinetic Monte Carlo (kMC) simulation of the marble game

Figure 2.1 Schematic representation of the marble game kinetic Monte Carlo (kMC) simulation model. The particles move just like in the original marble game, but the jumping rate is now characterized by a rate constant k (repeated from main text).

- The **jump rate constant** $k \quad [\text{s}^{-1}]$ provides the timescale for the kMC sim.
- The **mean residence time** $\tau = 1/k$ is the average time between jumps of a particular particle.

$$\tau = \frac{1}{k}$$ \hspace{1cm} (2.3)

- The **timestep** Δt is the time between jumps (irrespective of which particle jumps) is τ / N

$$\Delta t = \frac{1}{Nk}$$ \hspace{1cm} (2.2)

Equation (2.2) means that the amount of physical time associated with each step depends on both N and k. **Note:** The number of steps is *not* the same as physical time.

- the **fraction of marbles in box 1** $x_1 = N_1/N$ is an intensive property that can be used to compare systems with different numbers of marbles N.
- At equilibrium $\langle x_1 \rangle = 0.5$ on average independent of k, N or x_0.
- The **variability** of the x_1 vs. time curve depends on the number of marbles N, with small systems showing greater variability.
- The **average shape** of the curve does not depend on N or k – it only depends on x_0 the initial fraction in box 1.
- The **duration** of the sim is determined by

$$t_{\text{sim}} = N_{\text{steps}} \Delta t = \frac{N_{\text{steps}}}{Nk}$$ \hspace{1cm} (2.11)
Marble game model of TYLENOL® elimination

Figure 2.8 Marble game representation of the two-box model of drug elimination (repeated from main text).

- Tylenol molecules are eliminated from the body with a rate $k_e N_1$ for jumps from box 1 → 2. Jumps in the reverse direction from box 2 → 1 can’t happen.
- The total rate of jumps is given by
 \[\lambda = N_1 k_e \] \hspace{1cm} (2.14)
- The time between jumps (events) is
 \[\Delta t = \frac{1}{\lambda} = \frac{1}{N_1 k_e} \] \hspace{1cm} (2.13)
- In this sim, both λ and Δt are simulation variables that change at every step.

Exponential decay and half-life
- Use \(\text{EXP()} \) for \(e^x \)
- A semi-log plot of N_1 vs. t yields a straight line as the model predicts an exponential decay in N_1.
 \[N_1 = N_0 e^{-k_e t} \] \hspace{1cm} (2.15)
- The concept of a drug half-life originates from this model. The idea is that the time required for half to disappear (half-life) doesn’t depend on the starting amount. Many real drugs exhibit this type of behavior (approximately).

Key scientific concept

Numerical comparisons
- Use percent change $\Delta\%$ when comparing two similar numbers.
- Use a factor when comparing numbers that differ by a factor of 2 or more.
- In your comparison, explicitly state the reference value as part of a sentence. E.g. the generic aspirin is 30% less than the major brand.
Appendix - Answer graphs

Figure A2.1 – Checking your graph

Figure A2.1 Excel 2016 chart of an $N = 500$ marble game kMC simulation with $k = 0.05$ s$^{-1}$. The dotted line indicates the expected equilibrium value. Note: Both curves are of the Scatter with Straight Lines type. Remember – Smooth Lines are banned!

In coming transmission…

…algorithms making your head ache?

…TYLENOL® the pain reliever hospitals use most! 😊